京公网安备 11010802034615号
经营许可证编号:京B2-20210330
全民健身及大数据的探索应用
说到全民健身,人们可能更多想到的是广播操、绕圈跑、太极拳、广场舞,但在体育产业蓬勃发展的今天,全民健身已经开始有了越来越多不同的玩法。“大数据”就是其中最为前沿的一种。
在互联网等科技飞速发展的今天,大数据的应用越来越受到重视,2015年,国务院印发了《促进大数据发展行动纲要》,系统部署大数据发展工作,具体到全民健身领域,《体育发展“十三五”规划》等重要文件也均提到要借助大数据的力量来实现各个体育领域更好的发展。
“大数据在全民健身领域至少可以应用到三大场景:一是政府层面,主要体现在智慧城市的智慧体育上,即利用互联网、云技术,通过管理场馆、赛事、培训等运动资源和对相应的大数据采集和分析,全面了解全民健身参与情况,基于数据有效地解决政府的投入和配置的效率问题,有利于政府公共服务采购、供给侧改革、提升人民群众生活幸福指数;二是在体育营销层面,可以通过技术手段获取大型场馆的观赛人群的数据,通过打通和匹配不同来源的数据,准确给出人群画像,做出精准营销,以捕捉体育带来的新的消费需求和潜在商机;三是在健康管理领域,通过对个体的运动健康的数据积累和状态追踪,提出运动、饮食、防病的个性化推荐,这对保险、食品、医疗、体育等行业具有深刻的影响。”新赛点体育董事长徐林洲说。
说到全民健身及大数据的探索应用,新赛点公司颇有发言权,这家拥有300多名员工的公司在2007年成立后,一直专注于在全民健身领域提供一站式体育运动服务。新赛点经过多年投资、自主研发了基于移动互联网的百动运动服务平台,整合一、二、三线城市2000家以上的场馆资源,为行业协会、大型企业像中国银行、广发银行、中信银行、中国移动等一百多家大型企业背后的数千万自有客户和企业员工提供多种运动健身服务,该公司去年在新三板挂牌后,在选择最新的战略突破点时,就是探索大数据如何结合全民健身中的各个场景,产生新的业务增值。
徐林洲介绍说,公司原有的业务方向是为大企业客户提供包括场馆预订、赛事组织、俱乐部管理的定制化解决方案,而现在,该公司已经尝试依托全民健身服务平台和场馆云管理系统,打造基于大数据和应用场景的标准化产品组合和细化的服务,更精确地满足个体的运动需求。
对于大数据在体育领域的作用,中国社会科学院社会科学文献出版社社长谢寿光有着更为宏观的解读。他说:“我们这个时代需要新型的体育制度,今天你想在任何一个方向有所发展,都需要利用大数据做深入的分析,需要对需求、对投资、对环境作精准的分析和判断。”
体育大数据的建立始于对运动人群的分类。新赛点将白领员工分为四类,分别是运动发烧友、运动爱好者、泛运动人群和非运动人群,针对每一类人群,新赛点都有相应的服务组合,涉及监测体质,开运动处方,指导运动选择,建立运动社群,运动健康数据追踪、装备、培训等等,通过运营,激发运动消费的转化率。而这些消费过程,帮助新赛点积累了第一手的不同人群运动消费的数据。
“新赛点不仅用大数据的观点来洞察直接服务的用户,”徐林洲说,“我们最近也开始与大数据公司合作,通过帮助体育主题公园和大型赛事场馆智能化,获取大数据,从另一个维度理解体育消费者。这些公园和场馆一般有着巨大的观众流量,而通过各种设备,可以采集到流量观众的数据,上传到云平台之后,与同样观众的其他线上和线下的大数据关联,就可得出用户的多维度的人口属性,线上行为,线下消费,体育偏好的洞察,通过APP,园区的互动屏,线下服务进行精准的体育营销,帮助公园,场馆的运营商把人群流量转为营销收入。”
对于大数据在体育场馆中应用,东城区体育局副局长马力也有着同样的感触。他说:“数字化是基础,网络化是条件,智能化是核心,这里面大数据将会发挥很大的作用。通过大数据,能够知道在场馆中人们运动的心率、运动的强度等等一系列情况,这都属于场馆智能化的一部分。”
其实大数据在全民健身中的作用不仅局限于场馆,维宁体育CEO纪宁曾提出未来的十类有发展前景的体育大数据公司类型,包括体育大数据广告公司、体育大数据电商平台公司、运动健康监测大数据公司等等。“大数据是一个金矿,是没有被开采的金矿,目前的中国体育产业大数据前景无限,空间广阔。”纪宁说。
大数据在各种运动、观赛场景的应用为全民健身乃至整个体育产业的各个领域提供了巨大的想象空间。“随着越来越多的人参与到运动健身中来,体育消费快速增长,消费场景日益多样化,同时移动互联网,人工智能,物联网的快速发展,加上全民健身已上升为国家战略,各级政府政策引导和资金支持,体育产业发展进入了爆发的黄金十年期,而大数据在全民体育中越来越广泛的应用,将成为加速群众体育发展的助推器。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04