
python中将函数赋值给变量时需要注意的一些问题
变量赋值是我们在日常开发中经常会遇到的一个问题,本文主要给大家介绍的是关于python将函数赋值给变量时需要注意的一些问题,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍:
见过两种函数赋值给变量的形式,一种是
a=f
另一种是
a=f()
这两种形式是有区别的,分别总结一下。
1.a=f型属于将变量指向函数。
用代码验证一下:
>>> f = abs
>>> f(-10)
10
说明变量f现在已经指向了abs函数本身。直接调用abs()函数和调用变量f()完全相同。这是廖雪峰老师python教程上的例子,现在调用f()和调用abs()是一样的了。
再举一个工厂函数的例子:
def maker(N):
def action(X):
return X**N
return action
这个嵌套函数的外层返回值为内层函数的函数名,注意没有括号,这里有无括号是有很大区别的。此时调用外部函数:
f=maker(2)
那么如上所述,f便指向了action函数,且限制条件为N=2,可以理解为f为N等于2时的action函数。我们来调用它:
>>> f(3)
9
证明f和action函数是一样的。
2.a=f()型属于将f()的返回值赋值给a的过程
这里的a仅仅接收f()的返回值,如果f()没有返回值,那么a即被赋值为None。这里值得注意的一点是,在a=f()的执行过程中,f()会运行一次,这也是我刚刚搞明白的,如:
>>> def add(x,y):
z=x+y
print(z)
>>>a=add(3,4)
7
这里虽然只有一个赋值语句执行了,但是却输出了结果7,说明赋值过程函数add执行了,然而a的值为None,且只能通过print语句才可以显示。不只是赋值过程函数会执行,写在return语句中也会如此。
>>>def log(func):
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
>>>@log
>>>def now():
print('2015-3-25')
这是廖雪峰老师python教程装饰器一节的例程,刚开始我以为return func(*args,**kw)这个语句是返回了now()函数(即func函数)的返回值,后来发现now函数没有返回值,即为None,所以其实是这个语句在赋值过程,
func(*args,**kw)执行了,即函数now的print语句执行了。
下面的习题中,一个变形是要求在函数调用的前后打印出'begin call'和'end call',下面一位网友的程序是这么写的:
def wrapper(*args,**kw):
print(t+'begin call')
result=func(*args,**kw)
print(t+'end call')
return result
开始不太理解为什么使用result=func(*args,**kw)这句,后来理解后才明白其实赋值本身并没有意义,只是这句话同时使得func函数运行了,所以写成
def wrapper(*args,**kw):
print(t+'begin call')
func(*args,**kw)
print(t+'end call')
结果也是一样的。
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28