京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python 垃圾收集机制的实例详解
这篇文章主要介绍了python垃圾收集机制的实例详解的相关资料,希望通过本文能帮助大家理解这部分内容,需要的朋友可以参考下
pythonn垃圾收集方面的内容如果要细讲还是挺多的,这里只是做一个大概的概括
Python最主要和绝大多数时候用的都是引用计数,每一个PyObject定义如下:
#define PyObject_HEAD \
Py_ssize_t ob_refcnt; \
struct _typeobject *ob_type;
typedef struct _object {
PyObject_HEAD
} PyObject;
每个pyobject都有一个refcnt来记录他们自己的引用数,一旦引用数为0,就进行回收
引用计数的优点在于实时性,一旦没有其他对象引用了,就能立马进行回收,看起来十分不错,但为什么好多语言都没有采用该方案,因为引用计数有一个致命的缺点,无法解决循环引用问题,比如:
a = []
b = []
a.append(b)
b.append(a)
其实并没有其他变量引用a,b那么他们实际上应该被回收掉,但由于相互引用的关系,他们的引用数都为1,无法被回收。
在python中,相互引用的问题仅仅存在与容器里面,例如list,dictionary,class,instance。为了解决该问题,python引入了标记——清除和分代——回收另外两种机制。
事实上,python中的容器并没有之前讲的那么简单,在pyobject_head之前,还有一个PyGC_head,也就是专门用来处理容器的循环引用问题的。
typedef union _gc_head {
struct {
union _gc_head *gc_next;
union _gc_head *gc_prev;
Py_ssize_t gc_refs;
} gc;
long double dummy; /* force worst-case alignment */
} PyGC_Head;
所有创建的容器类的对象都会被记录到可收集对象链表中,通过上面的结构我们可以知道其实是构建了一个双向链表,这样我们就可以来跟踪所有可能产生循环引用的情况了。而像int,string等简单的不是容器类型的,只要引用技术为0,就会被回收。但是如果频繁的malloc和free会严重影响效率,所以python采用了大量的对象池来提高效率。
标记——清除包括了垃圾回收的两个方面:(1)寻找可以回收的对象(2)回收对象,python中的标记会从root object开始,遍历所有容器类对象,查找出可以通过引用来到达的一些对象,把他们放到由reachable维护的链表中,对于不能到达的放到unbreachable维护的链表中,此过程结束之后,对unreachable里面的元素进行回收即可。
那么如何对应之前循环引用的情况呢?python里面会产生一个有效的引用数,存在gc.gc_refs里面,像上面的a,b真实引用数为1,但有效的引用数为0(循环中的引用数都减1),由于不能直接改pyobjec里面的refcnt,否则会产生一系列问题,我们可以将有效的引用数记到gc.gc_refs里面,那么a,b 的真实有效引用数都为0,所以他们可以被回收。
下面是另外一种情况:
a = []
b = []
c = a
a.append(b)
b.append(a)
这里ab也是循环引用,但是多了c来引用a,通过计算循环中的有效引用计数可得a的引用数为1,b的引用数为0,看起来b应该被回收,但实际上因为a是不可被回收的,a又引用了b,所以b也会被放入在reachable链表中,不被回收,其gc.gc_refs还是会被置1的。
另外一种分代回收,是说内存中有的对象会频繁的malloc和free,有的则比较长久,如果一个对象经过多次垃圾收集和清除之后还存在的话,那么我们就可以认为,这个对象是长时间有用的,不用去频繁检测回收它。python中分为3代,分别是3个链表维护,0代最多维护700个对象,1代10个,2代10个,如果对象超过这个数了,就会调用标记——清除算法来进行回收。可以想到,0代的对象经过一段时间后会到1代2代中去,然后对它们的检测回收会相比于0代的不那么频繁了
要注意的是,python主要的机制还是引用技术,标记——清除和分代收集只是为了弥补引用计数的缺点而添加的,也就是说,后两者基本只在容器类的循环引用上能发挥作用
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12