
python 垃圾收集机制的实例详解
这篇文章主要介绍了python垃圾收集机制的实例详解的相关资料,希望通过本文能帮助大家理解这部分内容,需要的朋友可以参考下
pythonn垃圾收集方面的内容如果要细讲还是挺多的,这里只是做一个大概的概括
Python最主要和绝大多数时候用的都是引用计数,每一个PyObject定义如下:
#define PyObject_HEAD \
Py_ssize_t ob_refcnt; \
struct _typeobject *ob_type;
typedef struct _object {
PyObject_HEAD
} PyObject;
每个pyobject都有一个refcnt来记录他们自己的引用数,一旦引用数为0,就进行回收
引用计数的优点在于实时性,一旦没有其他对象引用了,就能立马进行回收,看起来十分不错,但为什么好多语言都没有采用该方案,因为引用计数有一个致命的缺点,无法解决循环引用问题,比如:
a = []
b = []
a.append(b)
b.append(a)
其实并没有其他变量引用a,b那么他们实际上应该被回收掉,但由于相互引用的关系,他们的引用数都为1,无法被回收。
在python中,相互引用的问题仅仅存在与容器里面,例如list,dictionary,class,instance。为了解决该问题,python引入了标记——清除和分代——回收另外两种机制。
事实上,python中的容器并没有之前讲的那么简单,在pyobject_head之前,还有一个PyGC_head,也就是专门用来处理容器的循环引用问题的。
typedef union _gc_head {
struct {
union _gc_head *gc_next;
union _gc_head *gc_prev;
Py_ssize_t gc_refs;
} gc;
long double dummy; /* force worst-case alignment */
} PyGC_Head;
所有创建的容器类的对象都会被记录到可收集对象链表中,通过上面的结构我们可以知道其实是构建了一个双向链表,这样我们就可以来跟踪所有可能产生循环引用的情况了。而像int,string等简单的不是容器类型的,只要引用技术为0,就会被回收。但是如果频繁的malloc和free会严重影响效率,所以python采用了大量的对象池来提高效率。
标记——清除包括了垃圾回收的两个方面:(1)寻找可以回收的对象(2)回收对象,python中的标记会从root object开始,遍历所有容器类对象,查找出可以通过引用来到达的一些对象,把他们放到由reachable维护的链表中,对于不能到达的放到unbreachable维护的链表中,此过程结束之后,对unreachable里面的元素进行回收即可。
那么如何对应之前循环引用的情况呢?python里面会产生一个有效的引用数,存在gc.gc_refs里面,像上面的a,b真实引用数为1,但有效的引用数为0(循环中的引用数都减1),由于不能直接改pyobjec里面的refcnt,否则会产生一系列问题,我们可以将有效的引用数记到gc.gc_refs里面,那么a,b 的真实有效引用数都为0,所以他们可以被回收。
下面是另外一种情况:
a = []
b = []
c = a
a.append(b)
b.append(a)
这里ab也是循环引用,但是多了c来引用a,通过计算循环中的有效引用计数可得a的引用数为1,b的引用数为0,看起来b应该被回收,但实际上因为a是不可被回收的,a又引用了b,所以b也会被放入在reachable链表中,不被回收,其gc.gc_refs还是会被置1的。
另外一种分代回收,是说内存中有的对象会频繁的malloc和free,有的则比较长久,如果一个对象经过多次垃圾收集和清除之后还存在的话,那么我们就可以认为,这个对象是长时间有用的,不用去频繁检测回收它。python中分为3代,分别是3个链表维护,0代最多维护700个对象,1代10个,2代10个,如果对象超过这个数了,就会调用标记——清除算法来进行回收。可以想到,0代的对象经过一段时间后会到1代2代中去,然后对它们的检测回收会相比于0代的不那么频繁了
要注意的是,python主要的机制还是引用技术,标记——清除和分代收集只是为了弥补引用计数的缺点而添加的,也就是说,后两者基本只在容器类的循环引用上能发挥作用
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28