
python实现稀疏矩阵示例代码
工程实践中,多数情况下,大矩阵一般都为稀疏矩阵,所以如何处理稀疏矩阵在实际中就非常重要。本文以Python里中的实现为例,首先来探讨一下稀疏矩阵是如何存储表示的。
1.sparse模块初探
python中scipy模块中,有一个模块叫sparse模块,就是专门为了解决稀疏矩阵而生。本文的大部分内容,其实就是基于sparse模块而来的。
第一步自然就是导入sparse模块
>>> from scipy import sparse
然后help一把,先来看个大概
>>> help(sparse)
直接找到我们最关心的部分:
Usage information
=================
There are seven available sparse matrix types:
1. csc_matrix: Compressed Sparse Column format
2. csr_matrix: Compressed Sparse Row format
3. bsr_matrix: Block Sparse Row format
4. lil_matrix: List of Lists format
5. dok_matrix: Dictionary of Keys format
6. coo_matrix: COOrdinate format (aka IJV, triplet format)
7. dia_matrix: DIAgonal format
To construct a matrix efficiently, use either dok_matrix or lil_matrix.
The lil_matrix class supports basic slicing and fancy
indexing with a similar syntax to NumPy arrays. As illustrated below,
the COO format may also be used to efficiently construct matrices.
To perform manipulations such as multiplication or inversion, first
convert the matrix to either CSC or CSR format. The lil_matrix format is
row-based, so conversion to CSR is efficient, whereas conversion to CSC
is less so.
All conversions among the CSR, CSC, and COO formats are efficient,
linear-time operations.
通过这段描述,我们对sparse模块就有了个大致的了解。sparse模块里面有7种存储稀疏矩阵的方式。接下来,我们对这7种方式来做个一一介绍。
2.coo_matrix
coo_matrix是最简单的存储方式。采用三个数组row、col和data保存非零元素的信息。这三个数组的长度相同,row保存元素的行,col保存元素的列,data保存元素的值。一般来说,coo_matrix主要用来创建矩阵,因为coo_matrix无法对矩阵的元素进行增删改等操作,一旦矩阵创建成功以后,会转化为其他形式的矩阵。
>>> row = [2,2,3,2]
>>> col = [3,4,2,3]
>>> c = sparse.coo_matrix((data,(row,col)),shape=(5,6))
>>> print c.toarray()
[[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 5 2 0]
[0 0 3 0 0 0]
[0 0 0 0 0 0]]
稍微需要注意的一点是,用coo_matrix创建矩阵的时候,相同的行列坐标可以出现多次。矩阵被真正创建完成以后,相应的坐标值会加起来得到最终的结果。
3.dok_matrix与lil_matrix
dok_matrix和lil_matrix适用的场景是逐渐添加矩阵的元素。doc_matrix的策略是采用字典来记录矩阵中不为0的元素。自然,字典的key存的是记录元素的位置信息的元祖,value是记录元素的具体值。
>>> import numpy as np
>>> from scipy.sparse import dok_matrix
>>> S = dok_matrix((5, 5), dtype=np.float32)
>>> for i in range(5):
... for j in range(5):
... S[i, j] = i + j
...
>>> print S.toarray()
[[ 0. 1. 2. 3. 4.]
[ 1. 2. 3. 4. 5.]
[ 2. 3. 4. 5. 6.]
[ 3. 4. 5. 6. 7.]
[ 4. 5. 6. 7. 8.]]
lil_matrix则是使用两个列表存储非0元素。data保存每行中的非零元素,rows保存非零元素所在的列。这种格式也很适合逐个添加元素,并且能快速获取行相关的数据。
>>> from scipy.sparse import lil_matrix
>>> l = lil_matrix((6,5))
>>> l[2,3] = 1
>>> l[3,4] = 2
>>> l[3,2] = 3
>>> print l.toarray()
[[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 1. 0.]
[ 0. 0. 3. 0. 2.]
[ 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 0.]]
>>> print l.data
[[] [] [1.0] [3.0, 2.0] [] []]
>>> print l.rows
[[] [] [3] [2, 4] [] []]
由上面的分析很容易可以看出,上面两种构建稀疏矩阵的方式,一般也是用来通过逐渐添加非零元素的方式来构建矩阵,然后转换成其他可以快速计算的矩阵存储方式。
4.dia_matrix
这是一种对角线的存储方式。其中,列代表对角线,行代表行。如果对角线上的元素全为0,则省略。
如果原始矩阵是个对角性很好的矩阵那压缩率会非常高。
找了网络上的一张图,大家就很容易能看明白其中的原理。
5.csr_matrix与csc_matrix
csr_matrix,全名为Compressed Sparse Row,是按行对矩阵进行压缩的。CSR需要三类数据:数值,列号,以及行偏移量。CSR是一种编码的方式,其中,数值与列号的含义,与coo里是一致的。行偏移表示某一行的第一个元素在values里面的起始偏移位置。
同样在网络上找了一张图,能比较好反映其中的原理。
看看在python里怎么使用:
>>> from scipy.sparse import csr_matrix
>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
怎么样,是不是也不是很难理解。
我们再看看文档中是怎么说的
Notes
| -----
|
| Sparse matrices can be used in arithmetic operations: they support
| addition, subtraction, multiplication, division, and matrix power.
|
| Advantages of the CSR format
| - efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
| - efficient row slicing
| - fast matrix vector products
|
| Disadvantages of the CSR format
| - slow column slicing operations (consider CSC)
| - changes to the sparsity structure are expensive (consider LIL or DOK)
不难看出,csr_matrix比较适合用来做真正的矩阵运算。
至于csc_matrix,跟csr_matrix类似,只不过是基于列的方式压缩的,不再单独介绍。
6.bsr_matrix
Block Sparse Row format,顾名思义,是按分块的思想对矩阵进行压缩。
以上就是本文的全部内容,希望对大家的学习有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27