
爬虫技术成了大数据时代的“宠儿”
大数据时代,一些看似微不足道的数据在收集、整理、提取、分析之后,会具有洪荒之力!
1. 政治角逐
前短时间我们被美国大选刷屏了。
2016年这场美国总统竞选被媒体称作“第一次数字化竞选”,希阿姨和川大大都组建了庞大的技术团队,将大量资金花在获取和使用投票者的信息上。民意调查结果,一直是总统大选时最倚重的数据来源。在长达半年的总统竞选活动中,会有许多组织或机构通过不同方式进行大量调查,并将结果汇总整理加工成民意调查数据。在更大的数据规模上,总统候选人们也采用了同样的策略,所依赖的数据来源也不仅仅是民意调查结果,还涵盖了诸多的如facebook这类的社交网站和公开及私有的数据库。
及时准确的收集这些数据,并且帮助制定策略以获得更多的选民支持。将美国超过2亿的选民资料,与大型网站与社交网络上的个人账号相互匹配起来,将网络行为对应到具体的个体,再和已经构成的、庞大的用户个人数据相结合,最终完全由准确数据来驱动竞选策略。
而以上这些就使得大数据分析技术成了两党候选人的重要武器。
2. 电商分析
抓取天猫、京东、淘宝等电商网的评论及销量数据,对各种商品(颗粒度可到款式)沿时间序列的销量以及用户的消费场景进行分析。
甚至还可以根据用户评价做情感分析,实时监控产品在消费者心目中的形象,对新发布的产品及时监控,以便调整策略。
3. 投资理财
雪球等财经类网站通过抓取雪球KOL或者高回报用户的行为,找出推荐股票。
4. 消费习惯分析
在大众点评、美团网等餐饮及消费类网站抓取各种店面的开业情况以及用户消费和评价,了解周边变化的口味,所谓是“舌尖上的爬虫”。
以及各种变化的口味,比如:啤酒在衰退,重庆小面在崛起。
5. 内部数据利用
企业在运营过程中产生的大量数据,其实是蕴含着巨大的价值,对企业未来的发展和创新商业模式都有着很大的帮助。充分的挖掘数据潜在价值,能帮助企业更好的细分市场,以助于公司能有针对性的为企业日后的发展提供数据支撑。更好的掌握市场动向,更好的对市场反应产生新的决策。
......
数据背后所隐藏的巨大商业价值正开始被越来越多的企业所重视,越来越多的企业开始进入大数据市场,建立各种大数据入口,以获得更多更大的海量数据。那么问题来了,数据从何而来?
政府或其它机构公开的数据 或 API
购买数据
企业自己产生的数据
组织技术团队来抓取数据
第1种公开的数据目前少之又少,主要还是机制不成熟,而且担心安全及隐私问题。
第2种途径对大多数企业来说意义也不大,一方面有价值且可以出售的数据不多,即使有的话价格也不是一般企业所能承受的;另一方面,企业需要的数据往往是多样化多渠道的,很难全部通过购买来解决。
第3种不用说,有数据意识的企业一般都有所积累,即使没有也可以开始积累。
因此,对很多企业来说,如果想获取全面、有效、更多的数据,抓取是一种不二的明智之选。也正因如此,爬虫技术成了大数据时代的“宠儿”,光开源的爬虫框架就不下50个,这应该就是一个侧面反映。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10