京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的理性与艺术家的感性碰撞出火花
数据化的呈现方式,使得采样更加全面,让样本变成了全本,在某种程度上得到了相对精准的信息,对于趋势预测、艺术研究领域、艺术成果展现提供了一定的量化参照;另外,对于投资者、收藏家来说,也不失为一种直观和具体。
音乐、绘画的关注者年龄分布(2013年至2015年)·数据来源:百度指数
大数据会给艺术品市场带来什么?这让人联想起包豪斯。20世纪初,现代设计家格罗佩斯创建的包豪斯作为现代设计的发端,开创了工业时代艺术与技术相结合的新纪元,形成了艺术教育与制作教学相结合的新型教育模式,奠定了现代艺术和设计教育的雏形,其中技术性、逻辑性和理性主义发挥了不可磨灭的作用。
被誉为“大数据先驱”的迈尔·舍恩伯格在《大数据时代》一书中提到了大数据的4个特征:一是数量大,二是价值大,三是速度快,四是多样性。大数据有3个层次,一是数据采集层,以App、Saas为代表的服务;二是技术服务层,以七牛云存储为代表的大数据技术服务层,这些包括数据的存储、数据的分析、数据的挖掘等;三是数据应用层,以数据为基础,为将来的移动社交、交通、教育、金融进行服务。大数据对于艺术品市场而言,既存在重大发展机遇,也有一定挑战。
大数据推动艺术产业发展
随着计算机技术的不断发展,人类进入信息社会,大数据应运而生,并成为一种新型信息资产,深刻影响着社会生活的各个领域。大数据技术的出现,使得云计算、物联网、移动互联网等领域覆盖到了人类生活的方方面面,数据形态的呈现也围绕着人们多样化的生活形态而发生改变。源源不断的信息原型为复杂性难题提供了多种解决方案。
大数据正在全球开辟一个新的时代,中国的艺术品市场也被带入这个行列。3月18日,胡润艺术榜在北京发布,这已是胡润研究院连续第八届在国内发布在世中国艺术家排行榜。面对来自全国各地的媒体,胡润依据这份榜单专门就中国艺术品市场多年来的走势及中国艺术家的表现做了深入浅出的论述。上海文化艺术品研究院执行院长孔达达认为,通过艺术品大数据,可以在数据挖掘的基础上,为投资人提供艺术品市场发展的动向,帮助他们找到准确的投资方向。国际著名艺术网站Artnet的执行经理托马斯也非常看好艺术大数据未来在中国的发展。
从某种意义上说,大数据不失为一种统计艺术。艺术品行业的大数据主要包括3个方面:用户大数据、内容大数据和渠道大数据。正是在互联网时代,这3种数据能够融合在一起,从而为艺术品市场提供支撑和服务。目前,大数据在艺术领域的应用涉及营销、运营、传播、管理、研究等领域,呈现形式如图库、音乐库、影视库、艺术品拍卖、多媒体艺术、展览等。通过对用户的搜索、浏览、点击量可以精准追踪和获取相关信息,从而引发新的商机。具体表现形式包括:热门歌曲播放榜单、推荐榜单、艺术家关注度排名、关注者地理位置等内容。比如,图中显示的是2013年至2015年对音乐和绘画的关注者年龄层分布统计,可以看出,年轻人更热衷于倾听音乐,40岁以上的人群对绘画的关注度明显上升。
文化企业尝鲜“大数据”
随着大数据的推广应用,一些文化企业尝试利用大数据来推动艺术产业发展。雅昌集团是中国艺术品数据库第一个吃螃蟹者,其在中国艺术品数据库的运作中采用了独有的CISDO版权管理机制,并建立了ArtImage版权交易服务平台。2013年4月,中国惠普有限公司与雅昌集团开始全面战略合作,建立了中国艺术品数据库。雅昌集团副总裁潘剑平介绍,该数据库以作品的“艺术创作与研究—传播与教育—交易—收藏”为主线,通过IT科技,推动艺术教育、学术、市场、产业的发展。数据库的图片资源采用先进的数字图像设备Cruse,独特的色彩管理标准ACMS,独有的版权管理机制与版权交易服务平台,先进的输出技术以及海量存储技术,在此基础上,雅昌集团推出了艺术家全集、数字出版、拍卖网络预展、艺品、电子图录等一系列产品。雅昌集团中国艺术品数据库总经理助理苏晓燕说:“中国艺术品数据库以艺术品库、艺术家库为核心,还包括拍卖机构、出版机构、文博机构、艺术期刊、艺术品收藏人、艺术图书等相关数据库,到2012年底已经存储艺术数据3000万条。同时,数据库根据应用的不同不断增加新的数据。”
国内艺术品数据存在不少问题
发展艺术品大数据,数据是重要保证和基础,“目前艺术品大数据在国际上已经有了较好口碑。以国际知名艺术网站Artnet为例,他们对于数据的整理较为谨慎,全线的1300多万个数据在欧美的各种银行、艺术品机构都得到广泛应用,带动了艺术品市场的数据化。”孔达达说。虽然中国艺术品交易规模不断增大,但艺术品数据化的程度与发达国家相比,差距还比较大。国内艺术品数据还存在不少问题:
首先,国内艺术品交易比较分散、数据不完整。一级市场以艺术家和代理人的私下交易为主,几乎所有艺术家都不可能向任何组织或机构汇报其每年的作品销售和收入情况,而代理机构为了逃税更不会对外界透露实情。拍卖企业是二级市场的主体。这些企业的交易比较集中,每次成交也有据可查。然而,只有部分拍卖企业与编制机构有合作关系。
其次,艺术品自身具有异质性,交易很难标准化,数据分析也存在困难。
再次,整个行业普遍存在卖假和假卖的现象,特别是拍卖成交数据,含有很多水分和泡沫。至于画廊等艺术品代理机构提供的润格,则完全不需要标准和依据,其真实性也大打折扣。此外,数据编制机构本身的商业性质,计算模型的建立方式同样也在影响着数据本身的客观性、公正性和专业性。
实现技术与艺术新的统一
大数据是对已知信息和已有素材的规律化呈现,一定范围和一定时间内有助于预测事件发生的态势,大数据技术的出现,势必会影响到艺术发展的轨迹,也将开启艺术领域创作的新时代。这将会是继包豪斯时代之后又一次“艺术与技术新统一”的变革,信息交叉学科的出现则是在教育领域上的一大体现,是对科学、艺术和技术的综合反应。
工业革命时期,大工业生产中出现了“技术与艺术相对峙”的状况,包豪斯的创立则在艺术与工业之间架起了桥梁,实现了艺术与技术的新统一。当前,大数据技术的发展,开启了物联网、互联网、移动互联网在各行各业的联合运用,销量消费、秒杀消费、口碑消费等带来了所谓的3C产品(Cold、Cheap、Chinese)。同时,同质化现象在我国表现也很明显,卖家市场远远占据了消费者之上,消费者的审美价值观受到了一定的影响和诱导。因此,大数据的出现是一把双刃剑,有积极作用也有消极影响。我们应该充分利用大数据的积极作用,避免消极影响,实现技术与艺术新的统一。
当然,艺术不是迎合消费者,不是大众行为,但作为一种密集科学是可以被艺术家尝试和利用,创作出引领时代风尚的作品,在艺术与技术之间架起新的桥梁。尽管艺术的产生具有物质生活所需要的功利的源泉,然而,审美的乐趣则具有自身欢乐的理由。艺术的美学品质和审美价值是其他社会实践活动比拟不了的。我们相信,大数据的理性与艺术家的感性,在互联网技术飞速发展的当下,必然会出现交集,其结果将不亚于包豪斯所带来的深远影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22