
Python列表(list)、字典(dict)、字符串(string)基本操作
这篇文章主要介绍了Python列表(list)、字典(dict)、字符串(string)基本操作小结,本文总结了最基本最常用的一些操作,需要的朋友可以参考下。
创建列表
代码如下:
sample_list = ['a',1,('a','b')]
Python 列表操作
代码如下:
sample_list = ['a','b',0,1,3]
得到列表中的某一个值
代码如下:
value_start = sample_list[0]
end_value = sample_list[-1]
删除列表的第一个值
代码如下:
del sample_list[0]
在列表中插入一个值
代码如下:
sample_list[0:0] = ['sample value']
得到列表的长度
代码如下:
list_length = len(sample_list)
列表遍历
代码如下:
for element in sample_list:
print 'element'
Python 列表高级操作/技巧
产生一个数值递增列表
代码如下:
num_inc_list = range(30)
#will return a list [0,1,2,...,29]
用某个固定值初始化列表
代码如下:
initial_value = 0
list_length = 5
sample_list = [ initial_value for i in range(10)]
sample_list = [initial_value]*list_length
# sample_list ==[0,0,0,0,0]
附:python内置类型
1、list:列表(即动态数组,C++标准库的vector,但可含不同类型的元素于一个list中)
a = ["I","you","he","she"] #元素可为任何类型。
下标:按下标读写,就当作数组处理
以0开始,有负下标的使用
0第一个元素,-1最后一个元素,
-len第一个元素,len-1最后一个元素
取list的元素数量
代码如下:
len(list) #list的长度。实际该方法是调用了此对象的__len__(self)方法。
创建连续的list
代码如下:
L = range(1,5) #即 L=[1,2,3,4],不含最后一个元素
L = range(1, 10, 2) #即 L=[1, 3, 5, 7, 9]
list的方法
代码如下:
L.append(var) #追加元素
L.insert(index,var)
L.pop(var) #返回最后一个元素,并从list中删除之
L.remove(var) #删除第一次出现的该元素
L.count(var) #该元素在列表中出现的个数
L.index(var) #该元素的位置,无则抛异常
L.extend(list) #追加list,即合并list到L上
L.sort() #排序
L.reverse() #倒序
list 操作符:,+,*,关键字del
a[1:] #片段操作符,用于子list的提取
[1,2]+[3,4] #为[1,2,3,4]。同extend()
[2]*4 #为[2,2,2,2]
del L[1] #删除指定下标的元素
del L[1:3] #删除指定下标范围的元素
list的复制
代码如下:
L1 = L #L1为L的别名,用C来说就是指针地址相同,对L1操作即对L操作。函数参数就是这样传递的
L1 = L[:] #L1为L的克隆,即另一个拷贝。
list comprehension
[ <expr1> for k in L if <expr2> ]
2、dictionary: 字典(即C++标准库的map)
复制代码 代码如下:
dict = {'ob1':'computer', 'ob2':'mouse', 'ob3':'printer'}
每一个元素是pair,包含key、value两部分。key是Integer或string类型,value 是任意类型。
键是唯一的,字典只认最后一个赋的键值。
dictionary的方法
代码如下:
D.get(key, 0) #同dict[key],多了个没有则返回缺省值,0。[]没有则抛异常
D.has_key(key) #有该键返回TRUE,否则FALSE
D.keys() #返回字典键的列表
D.values() #以列表的形式返回字典中的值,返回值的列表中可包含重复元素
D.items() #将所有的字典项以列表方式返回,这些列表中的每一项都来自于(键,值),但是项在返回时并没有特殊的顺序
D.update(dict2) #增加合并字典
D.popitem() #得到一个pair,并从字典中删除它。已空则抛异常
D.clear() #清空字典,同del dict
D.copy() #拷贝字典
D.cmp(dict1,dict2) #比较字典,(优先级为元素个数、键大小、键值大小)
#第一个大返回1,小返回-1,一样返回0
dictionary的复制
dict1 = dict #别名
dict2=dict.copy() #克隆,即另一个拷贝。
3、tuple:元组(即常量数组)
代码如下:
tuple = ('a', 'b', 'c', 'd', 'e')
可以用list的 [],:操作符提取元素。就是不能直接修改元素。
4、string: 字符串(即不能修改的字符list)
代码如下:
str = "Hello My friend"
字符串是一个整体。如果你想直接修改字符串的某一部分,是不可能的。但我们能够读出字符串的某一部分。
子字符串的提取
代码如下:
str[:6]
字符串包含判断操作符:in,not in
代码如下:
"He" in str
"she" not in str
string模块,还提供了很多方法,如
代码如下:
S.find(substring, [start [,end]]) #可指范围查找子串,返回索引值,否则返回-1
S.rfind(substring,[start [,end]]) #反向查找
S.index(substring,[start [,end]]) #同find,只是找不到产生ValueError异常
S.rindex(substring,[start [,end]])#同上反向查找
S.count(substring,[start [,end]]) #返回找到子串的个数
S.lowercase()
S.capitalize() #首字母大写
S.lower() #转小写
S.upper() #转大写
S.swapcase() #大小写互换
S.split(str, ' ') #将string转list,以空格切分
S.join(list, ' ') #将list转string,以空格连接
处理字符串的内置函数
代码如下:
len(str) #串长度
cmp("my friend", str) #字符串比较。第一个大,返回1
max('abcxyz') #寻找字符串中最大的字符
min('abcxyz') #寻找字符串中最小的字符
string的转换
代码如下:
float(str) #变成浮点数,float("1e-1") 结果为0.1
int(str) #变成整型, int("12") 结果为12
int(str,base) #变成base进制整型数,int("11",2) 结果为2
long(str) #变成长整型,
long(str,base) #变成base进制长整型,
字符串的格式化(注意其转义字符,大多如C语言的,略)
str_format % (参数列表) #参数列表是以tuple的形式定义的,即不可运行中改变
>>>print ""%s's height is %dcm" % ("My brother", 180)
#结果显示为 My brother's height is 180cm
。。。。。。。。。。。。。。。。。。
list 和 tuple 的相互转化
tuple(ls)
list(ls)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13