
工业大数据在未来工业4.0和物联网的技术地位
工业大数据是指工业设备在生产过程中所产生的大量多样性的数据,其因物联网而广为人知。工业大数据因2012年“工业4.0”概念的出现而被重视,旨在以工业设备产生的数据为基础,通过大数据技术进行处理并且挖掘出更多的商业价值。
工业大数据的特点
工业大数据利用工业网络技术对原始数据进行处理,为管理决策提供依据,达到降低维护成本、改善客户关系的目的。
工业大数据要更麻烦
大数据一般具有3V的特点,即Volume(大量)、Velocity(高速)、Variety(多样),因此其以传统工具难以处理,只能采用新的策略进行存储分析等。而工业大数据则还有其自己的两个V。一个是visibility(可见性),即需要发现对现有资产和生产过程难以察觉的见解,并且以数据形式变为可见;另一个则是Value(价值),由于行业面临的风险及影响差异,工业大数据被要求有更高的精准度,否则其价值将会大打折扣。
工业大数据相比其他大数据来看,其结构化数据更多,相关性和实时性更强,也更易于分析。这是因为工业数据普遍是由自动化设备在生产过程中产生的,其环境和操作受到人为因素影响较小,不会产生太多不可控因素。
工业大数据的分析更侧重于关系挖掘和现象捕捉。一般来讲,工业大数据可以在现象中提取出的特征会涉及诸多的物理学科等问题,有效的分析将会比普通大数据涉及的知识领域更为宽泛,其分析困难程度可见。
工业大数据侧重现象捕捉
工业大数据面临着碎片化问题。工业大数据的分析对数据的完整性有着一定要去,因此其数据驱动分析系统需要从不同的工作条件中获取数据。但是在不同来源获取的数据存在离散和非同步的问题,因此需要预处理以保障数据的完整性、连续性和同步性。
工业大数据的挑战
工业大数据还面临质量差的难关。通常大数据分析的重点在数据挖掘,以数据的量来弥补数据的质缺陷。可是工业大数据中,变量通常具有明确的物理意义,数据完整性对于分析系统至关重要,低质量的数据可能彻底改变两个变量间的关系,对于高精度的分析可能造成灾难性的影响。
工业大数据更需要实时分析和可视化
其与传统商业智能不同,传统BI的处理工作主要集中于数据内部的结构化,并且定期进行周期性处理即可。而工业大数据的分析系统则要求达到实时分析和可视化处理结果。
鉴于这些特点的存在,工业大数据并不能简单的移植普通大数据的分析技术直接使用。工业大数据需要采用的是对于相关领域知识更了解,分析系统功能定义明确,分析速度快并且可以提供更明确的分析策略的大数据分析手段。
工业大数据的技术
工业大数据的不断增加为其后续处理工作制造了麻烦。由于自动化工业设备的不断增多,工业大数据产生的速度和数量都在暴涨,这对大数据的存储和管理的基础设施形成挑战。
工业大数据首先需要确保能够采集正确的数据。上文提到工业大数据对数据的要求更为苛刻,数据完整性的前提是数据的正确程度。当传感器提供的数据越来越多时,识别出与设备状态相关的参数减少非必要数据,提高数据的分析效率,确保获取有效数据。
图工业大数据推进工业4.0发展
其次应当建立适当的数据管理系统。工业大数据的存储需要能够处理大量数据并且做到实时分析,以便于迅速为决策提供支持,为了提高速度,这就需要存储、管理和处理更为集成化。这对数据存储基础设施有较高要求,需要在能够处理高速度、高数量的数据流的同时进行数据分析,这一步将会是未来工业大数据行业的核心和基础。
信息物理系统(CPS,Cyber-Physical Systems)也是工业大数据的核心技术。信息物理系统是计算进程和物理进程之间无缝集成的系统。与传统操作技术有着明显不同,工业大数据需要在更广泛的角度来进行决策,其核心部分在于设备状态。
信息物理系统是工业大数据的核心技术
信息物理系统的重点在于5C架构(Connection,Conversion,Cyber,Cognition,Configuration,即连接,转换,网络,认知,配置)。该架构意为将原数据传输并转换为可操作信息,利用分析洞察数据,最终通过知情决策改进流程。这一步将会进一步提高生产力降低成本。
在工业系统中,每时每刻都在由不同设备产生大量的数据。每一条流水线大量的机械会产生不同的数据样本,例如波音787每天航班都会产生超过5TB的数据,工业系统所产生的数据远远超过了传统方法的处理能力,因此对于管理和处理都构成了极大的挑战。
工业大数据撑起物联网
为了应对这一挑战,企业和研究人员都在收集、统计、存储和分析工业大数据集方面做出了努力,将一些数据集公布用于科研。不过即便如此,工业大数据所面临的压力依然巨大。但是,工业大数据是未来工业4.0和物联网的核心技术之一,工业大数据的发展提高生产水平的必要环节。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27