
工业大数据在未来工业4.0和物联网的技术地位
工业大数据是指工业设备在生产过程中所产生的大量多样性的数据,其因物联网而广为人知。工业大数据因2012年“工业4.0”概念的出现而被重视,旨在以工业设备产生的数据为基础,通过大数据技术进行处理并且挖掘出更多的商业价值。
工业大数据的特点
工业大数据利用工业网络技术对原始数据进行处理,为管理决策提供依据,达到降低维护成本、改善客户关系的目的。
工业大数据要更麻烦
大数据一般具有3V的特点,即Volume(大量)、Velocity(高速)、Variety(多样),因此其以传统工具难以处理,只能采用新的策略进行存储分析等。而工业大数据则还有其自己的两个V。一个是visibility(可见性),即需要发现对现有资产和生产过程难以察觉的见解,并且以数据形式变为可见;另一个则是Value(价值),由于行业面临的风险及影响差异,工业大数据被要求有更高的精准度,否则其价值将会大打折扣。
工业大数据相比其他大数据来看,其结构化数据更多,相关性和实时性更强,也更易于分析。这是因为工业数据普遍是由自动化设备在生产过程中产生的,其环境和操作受到人为因素影响较小,不会产生太多不可控因素。
工业大数据的分析更侧重于关系挖掘和现象捕捉。一般来讲,工业大数据可以在现象中提取出的特征会涉及诸多的物理学科等问题,有效的分析将会比普通大数据涉及的知识领域更为宽泛,其分析困难程度可见。
工业大数据侧重现象捕捉
工业大数据面临着碎片化问题。工业大数据的分析对数据的完整性有着一定要去,因此其数据驱动分析系统需要从不同的工作条件中获取数据。但是在不同来源获取的数据存在离散和非同步的问题,因此需要预处理以保障数据的完整性、连续性和同步性。
工业大数据的挑战
工业大数据还面临质量差的难关。通常大数据分析的重点在数据挖掘,以数据的量来弥补数据的质缺陷。可是工业大数据中,变量通常具有明确的物理意义,数据完整性对于分析系统至关重要,低质量的数据可能彻底改变两个变量间的关系,对于高精度的分析可能造成灾难性的影响。
工业大数据更需要实时分析和可视化
其与传统商业智能不同,传统BI的处理工作主要集中于数据内部的结构化,并且定期进行周期性处理即可。而工业大数据的分析系统则要求达到实时分析和可视化处理结果。
鉴于这些特点的存在,工业大数据并不能简单的移植普通大数据的分析技术直接使用。工业大数据需要采用的是对于相关领域知识更了解,分析系统功能定义明确,分析速度快并且可以提供更明确的分析策略的大数据分析手段。
工业大数据的技术
工业大数据的不断增加为其后续处理工作制造了麻烦。由于自动化工业设备的不断增多,工业大数据产生的速度和数量都在暴涨,这对大数据的存储和管理的基础设施形成挑战。
工业大数据首先需要确保能够采集正确的数据。上文提到工业大数据对数据的要求更为苛刻,数据完整性的前提是数据的正确程度。当传感器提供的数据越来越多时,识别出与设备状态相关的参数减少非必要数据,提高数据的分析效率,确保获取有效数据。
图工业大数据推进工业4.0发展
其次应当建立适当的数据管理系统。工业大数据的存储需要能够处理大量数据并且做到实时分析,以便于迅速为决策提供支持,为了提高速度,这就需要存储、管理和处理更为集成化。这对数据存储基础设施有较高要求,需要在能够处理高速度、高数量的数据流的同时进行数据分析,这一步将会是未来工业大数据行业的核心和基础。
信息物理系统(CPS,Cyber-Physical Systems)也是工业大数据的核心技术。信息物理系统是计算进程和物理进程之间无缝集成的系统。与传统操作技术有着明显不同,工业大数据需要在更广泛的角度来进行决策,其核心部分在于设备状态。
信息物理系统是工业大数据的核心技术
信息物理系统的重点在于5C架构(Connection,Conversion,Cyber,Cognition,Configuration,即连接,转换,网络,认知,配置)。该架构意为将原数据传输并转换为可操作信息,利用分析洞察数据,最终通过知情决策改进流程。这一步将会进一步提高生产力降低成本。
在工业系统中,每时每刻都在由不同设备产生大量的数据。每一条流水线大量的机械会产生不同的数据样本,例如波音787每天航班都会产生超过5TB的数据,工业系统所产生的数据远远超过了传统方法的处理能力,因此对于管理和处理都构成了极大的挑战。
工业大数据撑起物联网
为了应对这一挑战,企业和研究人员都在收集、统计、存储和分析工业大数据集方面做出了努力,将一些数据集公布用于科研。不过即便如此,工业大数据所面临的压力依然巨大。但是,工业大数据是未来工业4.0和物联网的核心技术之一,工业大数据的发展提高生产水平的必要环节。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25