
大数据驱动证券行业数字化转型
从十七世纪初第一只股票在欧洲诞生以来,证券及其交易就在资本市场上扮演着重要角色,在信息革命的时代,证券行业也行走在数字化转型的前列。今天,各种证券业务信息系统已经积累了越来越多的业务数据,其具有体量大、类型多、变化快、价值高等方面的特点,并且这些数据的价值发现已成为证券业务创新、产品优化、决策支持以及风险管理的重要手段,在不远的将来,价值数据将成为整个金融行业的核心资产。
事实上,利用数据分析技术来挖掘有价值的交易数据和外部数据,可以实现以客户为中心的精准营销,有限资源的合理配置和科学治理,利润最大化目标下的风险管控等等,是金融证券行业数字化转型的必由之路。
然而,随着云计算、大数据、人工智能、区块链技术的高速发展,传统的数据分析的方法已无法满足证券业务的要求,需要采用更先进的大数据技术对交易系统和管理系统日益增加的海量数据(包括结构化、非结构化、半结构化数据,如交易记录、日志流水、客户信息、管理信息等)进行存储、分析、挖掘、应用。
其业务应用主要集中在一下几个方面:
1) 精准营销:通过挖掘客户相关信息及外部数据,对客户进行360度画像,分析客户属性,通过客户管理、营销管理、服务管理、产品管理等手段,更准确地发现目标客户及更多的营销机会(客户挽留、交叉营销等)。实现产品和服务的精准营销,降低营销费用,提高营销效率。
2) 风险管理:构建统一的高并发、低时延的风险控制平台,可实现在线或离线的实时征信、实时日志分析、反欺诈、非法交易预警等业务功能,及时评估业务经营的合规性,识别潜在的业务风险,满足经纪业务、创新业务的风险管理需求,以及监管部门风控要求。
3) 历史数据服务:利用大数据集群,实现海量历史数据存储、归档、管理及应用,提高数据处理效率和业务响应效率,支持更科学的决策支持、更完善的客户服务和更高的客户满意度,通过对历史数据的挖掘分析,可实现市场、产品和服务的优化与创新,动态掌握资本市场的变化,提升市场竞争力。
4) IT治理:对交易系统、财务系统、交易所、登记结算公司、银行等多个数据源采集的数据进行审计,对IT系统进行资源配置分析,运行状态分析,可以实现智能IT运维管理,优化券商的业务运营。
华为公司基于大数据处理核心技术,与领先的ISV合作伙伴构建了面向证券行业风险管理、市场营销等业务的联合大数据解决方案,解决过去券商数据系统无法支撑多类型的海量数据增长变化和业务成本过高的问题,可高效建设金融证券第二数据平面,实时挖掘分析、应用数据价值,支持业务运营。
该解决方案整体技术架构如下图:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13