京公网安备 11010802034615号
经营许可证编号:京B2-20210330
简历消亡的大数据招聘时代,这6个特质让你脱颖而出
招聘一直以来是作为一门艺术存在的,但是它正逐渐转变成一门科学。如今大部分工作与工作产品基本上都是数字化的,有时你甚至不需要简历。公司可以轻易地通过互联网搜索到应聘者职业生涯的潜在数据,将大数据技术应用到多年的员工调查和测试中,甚至从专门设计的游戏中获取新数据。
“关于某个人是谁,做什么工作等信息其实早已存储在他们的硬盘、Evernote、box.net账号或者Dropbox云账号中了。”人才搜索企业Talentbin的首席执行官Peter Kazanjy说。
简历正在消亡。与此同时,大学排名和成绩也已不再那么重要。2013年,谷歌人员分析部门的副总Prasad Setty就曾表示,谷歌长期筛选应聘人员的两项指标——美国学术能力测试(SAT)成绩和大学平均绩点——已经无法评估一个人的成就了,而且“不会再被当作重要的招聘标准”。Knack公司的CEO Guy Halfteck也认为,学校排名和个人平均绩点对于人本身以及潜力而言并不是很有意义,以此来量化成功是不具有影响力的。
为了找出成功和创新员工有哪些特征,Knack将先进的数据分析工具和游戏结合在了一起,通过一系列游戏实时观察目标对象的实际行为和表现。由于计算机可以从用户参与游戏的每一个瞬间获得有用的数据,15分钟游戏就足以创造100万字节的数据。因此领导者最终获取到的不只是完美的简历,更有应聘者的社交能力、适应力、情商等多方面信息。
在大数据面前,应聘者无处可藏。而以下这6个特质,或许可以助你脱颖而出。
适应力
对于每份工作来说,“学习敏捷”都是一种重要品质,这是指迅速学习并主动采取行动的能力。“公司想要的是一个能快速适应新环境、在挑战中蓬勃发展、愿意学习新东西的人。” 在德勤咨询公司创始人乔希·贝辛看来,那些表现最好的人不是需要被告知需要做什么的人,而是那些喜欢挑战的人,他们自己寻找资讯,并快速适应环境。遵循指令的人是可以被取代的,只有那些能投入新环境里并茁壮成长的人才真正有价值。
心理韧性
Kenexa公司首席营销官Tim Geisert说:“在大多数人心目中,一个好的销售人员必须是一个外向的人,拥有良好的人际关系和友好态度。这只说对了一部分。我们从数据中发现,实际上还有一种比其他特质都重要的潜在特质,那就是所谓的‘情感勇气’。”拥有“情感勇气”的人心理韧性强,他们能够以积极,乐观的态度来迎接生活中的挑战,更容易拥有幸福和满足的生活。
社交能力和情商
每一份工作中,社交能力都是成功的主要因素之一。如果你提出一个有创意的想法,但是你没有办法说服别人,它可能就无法实现,而这并不是创造力的问题。
“我们所做的每件事,以及公司计划,都需要与他人互动。”Halfteck认为,无论你是创新者、医生、老师、零售商,或者销售人员,你的社交能力都能让你巧妙地管理各种社会状况,回应他人,理智地厘清社会情况及其背后原因。“社交能力可以将表现更好的人从群体中区分出来。”
不同的文化背景
据乔希·贝辛介绍,一家石油公司对石油生产领域里突围并获得成功的人进行分析后,得到了令人惊讶的结果:大部分成功者都是在一个聚集不同类型的人的环境中长大,他们的父母都拥有多元文化或者国际经验。而当这家石油公司以传统方式找到的那些拥有石油学位、良好学术资历的应聘者,却未能从中发现成功者。
态度友好
与乔希·贝辛合作的一家影院尝试通过训练来提高每个员工的服务水平,但6到9个月的培训并没有产生效果。最终,人力资源部门负责人发现,关键不在培训,而在于人本身。随后,该公司的招聘标准从以往成绩、学历和学位调整为快乐个性、友好的态度,喜欢服务他人。这个改变给他们带来的回报是数百万美元。
专业度
越来越多的雇主开始寻找所谓的被动应聘者。他们相信那个没有主动找工作的人,或许就是最佳人选。当然,如果你专业度不够,也很难被找到。招聘人员越来越依赖数据、技能和资格来决定谁来面试,并找到合适的人选,而不再是费神地筛选几百份简历。因此简历写得再漂亮,还不如提高自己的专业水平。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29