
Python基础之函数用法实例详解
本文以实例形式较为详细的讲述了Python函数的用法,对于初学Python的朋友有不错的借鉴价值。分享给大家供大家参考之用。具体分析如下:
通常来说,Python的函数是由一个新的语句编写,即def,def是可执行的语句--函数并不存在,直到Python运行了def后才存在。
函数是通过赋值传递的,参数通过赋值传递给函数
def语句将创建一个函数对象并将其赋值给一个变量名,def语句的一般格式如下:
def <name>(arg1,arg2,arg3,……,argN):
<statements>
def语句是实时执行的,当它运行的时候,它创建并将一个新的函数对象赋值给一个变量名,Python所有的语句都是实时执行的,没有像独立的编译时间这样的流程
由于是语句,def可以出现在任一语句可以出现的地方--甚至是嵌套在其他语句中:
if test:
def fun():
...
else:
def func():
...
...
func()
可以将函数赋值给一个不同的变量名,并通过新的变量名进行调用:
othername=func()
othername()
创建函数
内建的callable函数可以用来判断函数是否可调用:
>>> import math
>>> x=1
>>> y=math.sqrt
>>> callable(x)
False
>>> callable(y)
True
使用del语句定义函数:
>>> def hello(name):
return 'Hello, '+name+'!'
>>> print hello('world')
Hello, world!
>>> print hello('Gumby')
Hello, Gumby!
编写一个fibnacci数列函数:
>>> def fibs(num):
result=[0,1]
for i in range(num-2):
result.append(result[-2]+result[-1])
return result
>>> fibs(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
>>> fibs(15)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377]
在函数内为参数赋值不会改变外部任何变量的值:
>>> def try_to_change(n):
n='Mr.Gumby'
>>> name='Mrs.Entity'
>>> try_to_change(name)
>>> name
'Mrs.Entity'
由于字符串(以及元组和数字)是不可改变的,故做参数的时候也就不会改变,但是如果将可变的数据结构如列表用作参数的时候会发生什么:
>>> name='Mrs.Entity'
>>> try_to_change(name)
>>> name
'Mrs.Entity'
>>> def change(n):
n[0]='Mr.Gumby'
>>> name=['Mrs.Entity','Mrs.Thing']
>>> change(name)
>>> name
['Mr.Gumby', 'Mrs.Thing']
参数发生了改变,这就是和前面例子的重要区别
以下不用函数再做一次:
>>> name=['Mrs.Entity','Mrs.Thing']
>>> n=name #再来一次,模拟传参行为
>>> n[0]='Mr.Gumby' #改变列表
>>> name
['Mr.Gumby', 'Mrs.Thing']
当2个变量同时引用一个列表的时候,它们的确是同时引用一个列表,想避免这种情况,可以复制一个列表的副本,当在序列中做切片的时候,返回的切片总是一个副本,所以复制了整个列表的切片,将会得到一个副本:
>>> names=['Mrs.Entity','Mrs.Thing']
>>> n=names[:]
>>> n is names
False
>>> n==names
True
此时改变n不会影响到names:
>>> n[0]='Mr.Gumby'
>>> n
['Mr.Gumby', 'Mrs.Thing']
>>> names
['Mrs.Entity', 'Mrs.Thing']
>>> change(names[:])
>>> names
['Mrs.Entity', 'Mrs.Thing']
关键字参数和默认值
参数的顺序可以通过给参数提供参数的名字(但是参数名和值一定要对应):
>>> def hello(greeting, name):
print '%s,%s!'%(greeting, name)
>>> hello(greeting='hello',name='world!')
hello,world!!
关键字参数最厉害的地方在于可以在参数中给参数提供默认值:
>>> def hello_1(greeting='hello',name='world!'):
print '%s,%s!'%(greeting,name)
>>> hello_1()
hello,world!!
>>> hello_1('Greetings')
Greetings,world!!
>>> hello_1('Greeting','universe')
Greeting,universe!
若想让greeting使用默认值:
>>> hello_1(name='Gumby')
hello,Gumby!
可以给函数提供任意多的参数,实现起来也不难:
>>> def print_params(*params):
print params
>>> print_params('Testing')
('Testing',)
>>> print_params(1,2,3)
(1, 2, 3)
混合普通参数:
>>> def print_params_2(title,*params):
print title
print params
>>> print_params_2('params:',1,2,3)
params:
(1, 2, 3)
>>> print_params_2('Nothing:')
Nothing:
()
星号的意思就是“收集其余的位置参数”,如果不提供任何供收集的元素,params就是个空元组
但是不能处理关键字参数:
>>> print_params_2('Hmm...',something=42)
Traceback (most recent call last):
File "<pyshell#112>", line 1, in <module>
print_params_2('Hmm...',something=42)
TypeError: print_params_2() got an unexpected keyword argument 'something'
试试使用“**”:
>>> def print_params(**params):
print params
>>> print_params(x=1,y=2,z=3)
{'y': 2, 'x': 1, 'z': 3}
>>> def parames(x,y,z=3,*pospar,**keypar):
print x,y,z
print pospar
print keypar
>>> parames(1,2,3,5,6,7,foo=1,bar=2)
1 2 3
(5, 6, 7)
{'foo': 1, 'bar': 2}
>>> parames(1,2)
1 2 3
()
{}
>>> def print_params_3(**params):
print params
>>> print_params_3(x=1,y=2,z=3)
{'y': 2, 'x': 1, 'z': 3}
>>> #返回的是字典而不是元组
>>> #组合‘#'与'##'
>>> def print_params_4(x,y,z=3,*pospar,**keypar):
print x,y,z
print pospar
print keypar
>>> print_params_4(1,2,3,5,6,7,foo=1,bar=2)
1 2 3
(5, 6, 7)
{'foo': 1, 'bar': 2}
>>> print_params_4(1,2)
1 2 3
()
{}
相信本文所述对大家Python程序设计的学习有一定的借鉴价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23