
大数据助力新零售,满足个性化需求
新零售已经成为如今消费领域的热词。如何定义新零售?笔者认为,新零售是以消费者体验为中心的数据驱动的泛零售形态。
新零售的特征包括:数据技术发展可以无限逼近消费者内心需求,掌握数据就是掌握消费者需求;借助数字技术,物流业、大文娱等多元业态延伸出多元的零售形态;任何零售主体,消费者和商品既是物理的也是数字化的,企业内部和企业间流通的损耗最终可达到无限逼近“零”的理想状态。
如今,人们的一举一动都会留下数据痕迹。大数据是一种包罗万象且规模庞大的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。大数据的价值在于对数据的“加工能力”,通过“加工”实现数据的“增值”。数据技术发展可以无限逼近消费者内心需求,掌握数据就是掌握消费者需求,因此,企业需要更加精准的数据以洞察不同消费者需求。
如今,国民经济快速发展,人民生活水平提高,各方面消费力量兴起;用户更加注重商品品质,选择符合自身需要和消费特征的商品;商业回归产品与服务的本质,产生出更符合细分消费需求的商品和服务。
在这些宏观经济背景下,消费用户逐渐趋于细分,“泛90后”和女性,已经成为时尚产业两大主要目标客群,具有高学历、高信心、高收入、高频次、易种草、更细分等六大特征。以“泛90后”为例,泛90后人群有着和其他年龄层消费者完全不一样的面相。他们成长于物质已经比较充裕的年代,习惯于用互联网获取大量信息;他们是一群smart shopper,相比价格,他们更关注商品品质、服务体验和品牌个性等方面。
同时,针对女性消费的研究表明,女性消费者特别是年轻女性消费者的消费呈现比较高的消费频次,女性消费者已经非常习惯于社交型的电商形态,在社交的过程中吸取别人的购物建议,获取新的购物信息并在内心“种草”。而大量专门针对女性设计的产品崭露头角的背景则是女性细分化市场迎来非常好的发展。
未来用户的购物需求和购物场景,将会出现‘时空、信息、需求、渠道、生产’这五个‘碎片化’。因此也出现了社交电商、物联网、闪购等多元化的购物形式。基于时尚消费者的变化,未来时尚零售将出现场景化、数据化、个性化、社交化等四大趋势。
移动互联网时代,市场开始由传统价格导向转为场景导向,随着移动购物模式的多样化,与场景相关的应用将成为驱动消费者迁移的新增长点;随着对大数据的深度挖掘,对于用户风格喜好,款式,颜色,设计细节等的决策越来越多地被数据指导,对于用户的千人千面个性化推荐也将越发成熟;消费需求个性化在电商发展中快速演变,升级,适应用户的转变并期待引领用户消费观,一批垂直电商兴起,围绕人群深耕;在网红风靡、内容电商兴起及大数据的冲击与推动下,社交和电商不断融合发展,电商行业已逐渐向基于社会化发展。
新时尚电商例如美丽联合集团,就正在努力尝试借助大数据和新零售形式,帮助服装行业供给侧解决一直以来令人困扰的款式预测和库存问题。通过大数据分析,我们将可以得出更加准确的款式预测,并基于大数据进行款式判断算法,经过流通环节的测款等方法做到最大程度的精准库存预测,从而做到“零库存”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13