京公网安备 11010802034615号
经营许可证编号:京B2-20210330
变局:从数据分析一年前后A股
回忆总是美好的。1年前的7月,A股结束了长达6年的“漫漫熊途”,2014年11月央行2年多以来首次降息,促发了A股此后7个月的大牛行情。现在A股已经从最高点回落了近40%或2000点。那么在牛市一周年后,A股究竟发生了怎样的变化?为回答这个问题,不妨把这一年以来A股的各类数据直接比较。结果会怎样?
先看指数涨跌这个核心数据:去年A股上涨52.87%,而今年以来,A股已经由高峰时的涨56%变为目前下跌1%。全球股市来看,美英也是先扬后抑,2014年,美、德、法、英、日股市分别涨7.52%、2.65%、-0.54%、-2.71%、7.12%。2015年以来是-8.37%、4.75%、8.06%、-6.06%、4.66%。和股市涨跌密切相关的是市值比较。2014年末,沪深两市的总市值为37万亿元,在今年5月升至历史高位62.7万亿元。而到了8月末这数值已经下降到43.8万亿元。
再看股票市场各类数据的比较。2014年末,沪深300、中小板、创业板的市盈率分别为12.91、42.59和63.76倍,到今年5月末是16.83、83.12和140.92倍,目前是12.15、48.41和75.89倍。融资余额来看,变化更直观。2014年末沪深两融余额刚突破1万亿大关,今年5月末该数据已突破2万亿,但随后却是断崖式的下跌,仅仅3个月过后,两融余额已跌破万亿.
从个股来看,2014年末,两市只有贵州茅台一只百元股,到了今年5月末,百元股大军已经扩充到79只,当中还有个股(全通教育)达到逾400元的历史高价。而目前百元股的数量为11只,最高价为停牌的迅游科技,报218.89元.
可以说大部分股票数据与股市先扬后抑基本吻合,但也有例外。AH溢价指数从去年中以来开始持续攀升,就算A股经历了两轮大跌,也仍能创出阶段新高,或许这与香港股市今年表现不佳有关。香港恒生指数今年以来下跌了近9%,恒生国企指数跌幅更达到18.9%。
股市回落,结果可能和人们想象的并不完全一样。1年前和1年后,既有很多不同,也有很多相似。而比结果更重要的,是这过程带来的启示。
其一,金融产品去杠杆应受到重视。回顾今年以来股市的大起大落,资金杠杆的过度使用以及随后的快速收缩,无疑是起到了很大的作用。也因为这样,制定合理的杠杆使用规则,确立与市场实际情况相符合的杠杆比例,就成为人们重点关注的事情。申万宏源分析师桂浩明认为,资本市场是需要杠杆的,但杠杆的使用又必须是符合中国资本市场实际。信用交易也好,带杠杆的金融产品也好,如何把握好它们的“度”至为关键。在这里,作为主导方的金融机构,的确应该有所担当,从稳定市场,有利可持续发展的角度出发,认真审视金融产品的降杠杆问题,从制度层面解决这个问题。
其二,股市波动有“危”有“机”。上半年努力上涨燃起火爆行情的A股,在最近的两个月里损耗殆尽,涨幅全部“回吐”。诺亚财富东北区域CEO徐珂强认为这次波动对中国资本市场来说,是一个机会,让个人投资者为主导的市场变成机构投资者为主导的市场。其次,互联网金融的发展很快,从业者大多是互联网出身的人。无论是做什么金融,只要涉及到金融,风险控制的能力才是核心。所以这次的股市波动是必须要经历的,而且越早经历越好。
其三,股票市场的运行逻辑未变。国泰君安表示,改革和创新依旧是中国经济内生性转变的核心逻辑,国企央企的改革,万众创新与万众创业的理念的深入人心,中国的新增长动力依旧充沛,这就隐含着一条核心逻辑,创新改革逻辑与经济逐步企稳的核心逻辑不变。
回到股市上,近期投资者对于后期的预期有所看淡,今年经济如呈现L形走势,改革预期加强是给予市场信心恢复的重中之重。比如近期央企国企整合改革方案的逐步出台便是较为明显的信号。
综上所述,对于后期市场依旧可以积极展望与期待,中国转型后的未来与中国资本市场的蓬勃发展是一对密不可分的双生子,国家政策层面的稳定,已经开始逐步唤回市场的信心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13