
多大的数据才算“大数据”
什么是大数据有一个故事,说的是一位顾客订购披萨时,披萨店可以立即调出这位顾客的许多信息,比如送披萨上门必有的家庭、单位等地址和电话,顾客的消费习惯从而推荐适合他的披萨种类,顾客名下的银行卡透支情况从而确定他的支付方式,甚至顾客要自取披萨时,还能根据顾客名下车辆的停放位置预估他的到店时间等等。
从这个故事,我们可以看出大数据的一些关键特征,比如容量大、类型多、关联性强、有价值等等。“大数据是以高容量、多样性、存取速度快、应用价值高为主要特征的数据集合,正快速发展为对数量巨大、来源分散、格式多样的数据进行采集、存储和关联分析,从中发现新知识、创造新价值、提升新能力的新一代信息技术和服务业态。”工信部信息化和软件服务业司副司长李冠宇接受经济日报·中国经济网记者采访时说。
仅仅规模大不是大数据
大数据,顾名思义,“大”该是应有之义。“大数据的定义最初与容量有关系。”李冠宇分析说,业界有几种对大数据的定义,其中一个共同点就是数据的容量超出了原有的存储、管理和处理能力。
正如中国电子信息产业发展研究院副院长樊会文接受记者采访时指出的,大数据概念产生就是因为数据量和数据类型急剧增加,以至于原有的数据存储、传输、处理以及管理技术不能胜任,需要全新的技术工具和手段。
信息技术日新月异,大数据的定义也在发生变化。工信部赛迪研究院软件所所长潘文说,数据即时处理的速度(Velocity)、数据格式的多样化(Variety)与数据量的规模(Volume)被称为大数据“3V”。但随着近几年数据的复杂程度越来越高,“3V”已不足以定义新时代的大数据,准确性(Veracity)、可视性(Visualization)、合法性(Validity)等特性又被加入大数据的新解,从“3V”变成了“6V”。
对于“多大容量的数据才算大数据”,潘文说,大数据的规模并没有具体的标准,仅仅规模大也不能算作大数据。规模大本身也要从两个维度来衡量,一是从时间序列累积大量的数据,二是在深度上更加细化的数据。
李冠宇说,比如一份现在看起来很小的数据,但是纵向积累久了也可以变成大数据,横向与其他数据关联起来也可能形成大数据。而一份很大的数据如果没有关联性、没有价值也不是大数据。
运满满研究院院长徐强认为,“大”是必要条件,但非充分条件。基于移动互联网用户规模红利,国内平台型企业比较容易获取大量数据,但数据不是越多越好,无用数据就像噪音,会给数据分析、清洗、脱敏和可视化带来负担。
这也正如阿里巴巴集团董事局主席马云在某次演讲中说的:“很多人以为大数据就是数据量很大,其实大数据的大是大计算的大,大计算+数据,称之为大数据。”
“水涨船高”的大数据
今年麦收时节,在雷沃重工的全国“三夏”跨区作业信息服务中心,显示屏的全国电子地图上有许多大小不一、颜色不同的圆圈,这是每个区域正在作业的收割机。智能化的收割机会自动获得许多数据,包括机器运行情况、收割量、小麦含水量等,数据传回后台汇总后,总体收割情况一目了然。
“大数据概念正是来自信息技术的飞速发展和应用,特别是随着云计算、物联网、移动互联网的应用,数据量迅猛增长。数据来源有两种,一种与人有关,比如政府、企业等为人们服务时产生的数据;另一种与物有关,在移动泛在、万物互联时代,物联网应用的浪潮将带动数据量爆发式增长。”李冠宇说。
这也就不难理解,为何当下数据产生的速度如此之快。正如樊会文所分析的,一方面,信息终端大面积普及,信息源大量增加;另一方面,基于云计算的互联网信息平台快速增长,数据向平台大规模集中。
大数据与云计算、物联网、人工智能等新一代信息技术之间相互影响、相互促进、相互融合。徐强说,运满满通过车联网设备和信息平台,每天获取3TB至4TB的数据,运用先进的大数据算法模型,实现了智能车货匹配、智能实时调度等。
樊会文认为,云计算是硬件资源的虚拟化,而大数据是海量数据的高效处理。简单来说,云计算是大数据的基础,有了云计算才能大量集中数据从而产生大数据。同时,大数据也支撑了云计算应用创新,带动云计算发展。
人工智能的核心在于大数据支撑。围棋人工智能程序“阿尔法狗”打败柯洁,离不开大数据的支持。“大数据技术能够通过数据采集、分析等方式,从海量数据中快速获得有价值的信息,为深度学习等人工智能算法提供坚实的素材基础。反过来,人工智能技术也促进了大数据技术的进步。两者相辅相成,任何一方技术的突破都会促进另外一方的发展。”潘文说。
核心价值在于应用
刚刚过去的“6·18”再次掀起网购热潮。网购消费者基本都被精准推送过广告信息,如曾浏览过电饭煲的消费者,很长一段时间内会在登录页面后看到各品牌电饭煲信息。
阿里、京东、360等互联网平台接触消费者众多,也因此获得了很多数据。但是正如精准推送一样,不对这些数据进行处理、挖掘就没法产生价值。比如雷沃收割机传回的数据进行汇总后还要分析处理,从而得出对收割作业乃至整个农业都有意义的结论才是这些数据的价值所在。
“大数据作为重要的基础性战略资源,核心价值在于应用,在于其赋值和赋能作用,在于对大量数据的分析和挖掘后所带来的决策支撑,能够为我们的生产生活、经营管理、社会治理、民生服务等各方面带来高效、便捷、精准的服务。”李冠宇强调。
我们正在步入万物互联时代。华为预测,到2025年,物联网设备的数量将接近1000亿个。工信部统计数据显示,目前我国网民数量超过7亿,移动电话用户规模已经突破13亿,均居世界第一。
“全球数据总量呈现指数级增长,企业级用户拥有的数据量在快速增加。互联网的社会化生产出巨量数据。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23