
在python的类中动态添加属性与生成对象
本文将通过一下几个方面来一一进行解决
1、程序的主要功能
2、实现过程
3、类的定义
4、用生成器generator动态更新每个对象并返回对象
5、使用strip 去除不必要的字符
6、rematch匹配字符串
7、使用timestrptime提取字符串转化为时间对象
8、完整代码
程序的主要功能
现在有个存储用户信息的像表格一样的文档:第一行是属性,各个属性用逗号(,)分隔,从第二行开始每行是各个属性对应的值,每行代表一个用户。如何实现读入这个文档,每行输出一个用户对象呢?
另外还有4个小要求:
每个文档都很大,如果一次性把所有行生成的那么多对象存成列表返回,内存会崩溃。程序中每次只能存一个行生成的对象。
用逗号隔开的每个字符串,前后可能有双引号(”)或者单引号('),例如”张三“,要把引号去掉;如果是数字,有+000000001.24这样的,要把前面的+和0都去掉,提取出1.24
文档中有时间,形式可能是2013-10-29,也可能是2013/10/29 2:23:56 这样的形式,要把这样的字符串转成时间类型
这样的文档有好多个,每个的属性都不一样,例如这个是用户的信息,那个是通话纪录。所以类中的具体属性有哪些要根据文档的第一行动态生成
实现过程
1.类的定义
由于属性是动态添加的,属性-值 对也是动态添加的,类中要含有updateAttributes()和updatePairs()两个成员函数即可,此外用列表attributes存储属性,词典attrilist存储映射。其中init()函数为构造函数。 __attributes前有下划线表示私有变量,不能在外面直接调用。实例化时只需a=UserInfo()即可,无需任何参数。
class UserInfo(object):
'Class to restore UserInformation'
def __init__ (self):
self.attrilist={}
self.__attributes=[]
def updateAttributes(self,attributes):
self.__attributes=attributes
def updatePairs(self,values):
for i in range(len(values)):
self.attrilist[self.__attributes[i]]=values[i]
2.用生成器(generator)动态更新每个对象并返回对象
生成器相当于一个只需要初始化一次,就可自动运行多次的函数,每次循环返回一个结果。不过函数用return 返回结果,而生成器用yield 返回结果。每次运行都在yield返回,下一次运行从yield之后开始。例如,我们实现斐波拉契数列,分别用函数和生成器实现:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return 'done'
我们计算数列的前6个数:
>>> fib(6)
1
1
2
3
5
8
'done'
如果用生成器的话,只要把 print 改成 yield 就可以了。如下:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
使用方法:
>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>
>>> for i in f:
... print(i)
...
1
1
2
3
5
8
>>>
可以看到,生成器fib本身是个对象,每次执行到yield会中断返回一个结果,下次又继续从yield的下一行代码继续执行。生成器还可以用generator.next()执行。
在我的程序中,生成器部分代码如下:
def ObjectGenerator(maxlinenum):
filename='/home/thinkit/Documents/usr_info/USER.csv'
attributes=[]
linenum=1
a=UserInfo()
file=open(filename)
while linenum < maxlinenum:
values=[]
line=str.decode(file.readline(),'gb2312')#linecache.getline(filename, linenum,'gb2312')
if line=='':
print'reading fail! Please check filename!'
break
str_list=line.split(',')
for item in str_list:
item=item.strip()
item=item.strip('\"')
item=item.strip('\'')
item=item.strip('+0*')
item=catchTime(item)
if linenum==1:
attributes.append(item)
else:
values.append(item)
if linenum==1:
a.updateAttributes(attributes)
else:
a.updatePairs(values)
yield a.attrilist #change to ' a ' to use
linenum = linenum +1
其中,a=UserInfo()为类UserInfo的实例化.因为文档是gb2312编码的,上面使用了对应的解码方法。由于第一行是属性,有个函数将属性列表存入UserInfo中,即updateAttributes();后面的行则要将 属性-值 对读入一个字典中存储。p.s.python中的字典相当于映射(map).
3.使用strip 去除不必要的字符
从上面代码中,可以看到使用str.strip(somechar)即可去除str前后的somechar字符。somechar可以是符号,也可以是正则表达式,如上:
item=item.strip()#除去字符串前后的所有转义字符,如\t,\n等
item=item.strip('\"')#除去前后的"
item=item.strip('\'')
item=item.strip('+0*')#除去前后的+00...00,*表示0的个数可以任意多,也可以没有
4.re.match匹配字符串
函数语法:
re.match(pattern, string, flags=0)
函数参数说明:
参数 描述
pattern 匹配的正则表达式
string 要匹配的字符串。
flags 标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等。
若匹配成功re.match方法返回一个匹配的对象,否则返回None。`
>>> s='2015-09-18'
>>> matchObj=re.match(r'\d{4}-\d{2}-\d{2}',s, flags= 0)
>>> print matchObj
<_sre.SRE_Match object at 0x7f3525480f38>
5.使用time.strptime提取字符串转化为时间对象
在time模块中,time.strptime(str,format)可以把str按照format格式转化为时间对象,format中的常用格式有:
%y 两位数的年份表示(00-99)
%Y 四位数的年份表示(000-9999)
%m 月份(01-12)
%d 月内中的一天(0-31)
%H 24小时制小时数(0-23)
%I 12小时制小时数(01-12)
%M 分钟数(00=59)
%S 秒(00-59)
此外,还需要使用re模块,用正则表达式,对字符串进行匹配,看是否是一般时间的格式,如YYYY/MM/DD H:M:S, YYYY-MM-DD等
在上面的代码中,函数catchTime就是判断item是否为时间对象,是的话转化为时间对象。
代码如下:
import time
import re
def catchTime(item):
# check if it's time
matchObj=re.match(r'\d{4}-\d{2}-\d{2}',item, flags= 0)
if matchObj!= None :
item =time.strptime(item,'%Y-%m-%d')
#print "returned time: %s " %item
return item
else:
matchObj=re.match(r'\d{4}/\d{2}/\d{2}\s\d+:\d+:\d+',item,flags=0 )
if matchObj!= None :
item =time.strptime(item,'%Y/%m/%d %H:%M:%S')
#print "returned time: %s " %item
return item
完整代码:
import collections
import time
import re
class UserInfo(object):
'Class to restore UserInformation'
def __init__ (self):
self.attrilist=collections.OrderedDict()# ordered
self.__attributes=[]
def updateAttributes(self,attributes):
self.__attributes=attributes
def updatePairs(self,values):
for i in range(len(values)):
self.attrilist[self.__attributes[i]]=values[i]
def catchTime(item):
# check if it's time
matchObj=re.match(r'\d{4}-\d{2}-\d{2}',item, flags= 0)
if matchObj!= None :
item =time.strptime(item,'%Y-%m-%d')
#print "returned time: %s " %item
return item
else:
matchObj=re.match(r'\d{4}/\d{2}/\d{2}\s\d+:\d+:\d+',item,flags=0 )
if matchObj!= None :
item =time.strptime(item,'%Y/%m/%d %H:%M:%S')
#print "returned time: %s " %item
return item
def ObjectGenerator(maxlinenum):
filename='/home/thinkit/Documents/usr_info/USER.csv'
attributes=[]
linenum=1
a=UserInfo()
file=open(filename)
while linenum < maxlinenum:
values=[]
line=str.decode(file.readline(),'gb2312')#linecache.getline(filename, linenum,'gb2312')
if line=='':
print'reading fail! Please check filename!'
break
str_list=line.split(',')
for item in str_list:
item=item.strip()
item=item.strip('\"')
item=item.strip('\'')
item=item.strip('+0*')
item=catchTime(item)
if linenum==1:
attributes.append(item)
else:
values.append(item)
if linenum==1:
a.updateAttributes(attributes)
else:
a.updatePairs(values)
yield a.attrilist #change to ' a ' to use
linenum = linenum +1
if __name__ == '__main__':
for n in ObjectGenerator(10):
print n #输出字典,看是否正确
总结
以上就是这篇文章的全部内容,希望能对大家的学习或者工作带来一定帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26