
在python的类中动态添加属性与生成对象
本文将通过一下几个方面来一一进行解决
1、程序的主要功能
2、实现过程
3、类的定义
4、用生成器generator动态更新每个对象并返回对象
5、使用strip 去除不必要的字符
6、rematch匹配字符串
7、使用timestrptime提取字符串转化为时间对象
8、完整代码
程序的主要功能
现在有个存储用户信息的像表格一样的文档:第一行是属性,各个属性用逗号(,)分隔,从第二行开始每行是各个属性对应的值,每行代表一个用户。如何实现读入这个文档,每行输出一个用户对象呢?
另外还有4个小要求:
每个文档都很大,如果一次性把所有行生成的那么多对象存成列表返回,内存会崩溃。程序中每次只能存一个行生成的对象。
用逗号隔开的每个字符串,前后可能有双引号(”)或者单引号('),例如”张三“,要把引号去掉;如果是数字,有+000000001.24这样的,要把前面的+和0都去掉,提取出1.24
文档中有时间,形式可能是2013-10-29,也可能是2013/10/29 2:23:56 这样的形式,要把这样的字符串转成时间类型
这样的文档有好多个,每个的属性都不一样,例如这个是用户的信息,那个是通话纪录。所以类中的具体属性有哪些要根据文档的第一行动态生成
实现过程
1.类的定义
由于属性是动态添加的,属性-值 对也是动态添加的,类中要含有updateAttributes()和updatePairs()两个成员函数即可,此外用列表attributes存储属性,词典attrilist存储映射。其中init()函数为构造函数。 __attributes前有下划线表示私有变量,不能在外面直接调用。实例化时只需a=UserInfo()即可,无需任何参数。
class UserInfo(object):
'Class to restore UserInformation'
def __init__ (self):
self.attrilist={}
self.__attributes=[]
def updateAttributes(self,attributes):
self.__attributes=attributes
def updatePairs(self,values):
for i in range(len(values)):
self.attrilist[self.__attributes[i]]=values[i]
2.用生成器(generator)动态更新每个对象并返回对象
生成器相当于一个只需要初始化一次,就可自动运行多次的函数,每次循环返回一个结果。不过函数用return 返回结果,而生成器用yield 返回结果。每次运行都在yield返回,下一次运行从yield之后开始。例如,我们实现斐波拉契数列,分别用函数和生成器实现:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return 'done'
我们计算数列的前6个数:
>>> fib(6)
1
1
2
3
5
8
'done'
如果用生成器的话,只要把 print 改成 yield 就可以了。如下:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
使用方法:
>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>
>>> for i in f:
... print(i)
...
1
1
2
3
5
8
>>>
可以看到,生成器fib本身是个对象,每次执行到yield会中断返回一个结果,下次又继续从yield的下一行代码继续执行。生成器还可以用generator.next()执行。
在我的程序中,生成器部分代码如下:
def ObjectGenerator(maxlinenum):
filename='/home/thinkit/Documents/usr_info/USER.csv'
attributes=[]
linenum=1
a=UserInfo()
file=open(filename)
while linenum < maxlinenum:
values=[]
line=str.decode(file.readline(),'gb2312')#linecache.getline(filename, linenum,'gb2312')
if line=='':
print'reading fail! Please check filename!'
break
str_list=line.split(',')
for item in str_list:
item=item.strip()
item=item.strip('\"')
item=item.strip('\'')
item=item.strip('+0*')
item=catchTime(item)
if linenum==1:
attributes.append(item)
else:
values.append(item)
if linenum==1:
a.updateAttributes(attributes)
else:
a.updatePairs(values)
yield a.attrilist #change to ' a ' to use
linenum = linenum +1
其中,a=UserInfo()为类UserInfo的实例化.因为文档是gb2312编码的,上面使用了对应的解码方法。由于第一行是属性,有个函数将属性列表存入UserInfo中,即updateAttributes();后面的行则要将 属性-值 对读入一个字典中存储。p.s.python中的字典相当于映射(map).
3.使用strip 去除不必要的字符
从上面代码中,可以看到使用str.strip(somechar)即可去除str前后的somechar字符。somechar可以是符号,也可以是正则表达式,如上:
item=item.strip()#除去字符串前后的所有转义字符,如\t,\n等
item=item.strip('\"')#除去前后的"
item=item.strip('\'')
item=item.strip('+0*')#除去前后的+00...00,*表示0的个数可以任意多,也可以没有
4.re.match匹配字符串
函数语法:
re.match(pattern, string, flags=0)
函数参数说明:
参数 描述
pattern 匹配的正则表达式
string 要匹配的字符串。
flags 标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等。
若匹配成功re.match方法返回一个匹配的对象,否则返回None。`
>>> s='2015-09-18'
>>> matchObj=re.match(r'\d{4}-\d{2}-\d{2}',s, flags= 0)
>>> print matchObj
<_sre.SRE_Match object at 0x7f3525480f38>
5.使用time.strptime提取字符串转化为时间对象
在time模块中,time.strptime(str,format)可以把str按照format格式转化为时间对象,format中的常用格式有:
%y 两位数的年份表示(00-99)
%Y 四位数的年份表示(000-9999)
%m 月份(01-12)
%d 月内中的一天(0-31)
%H 24小时制小时数(0-23)
%I 12小时制小时数(01-12)
%M 分钟数(00=59)
%S 秒(00-59)
此外,还需要使用re模块,用正则表达式,对字符串进行匹配,看是否是一般时间的格式,如YYYY/MM/DD H:M:S, YYYY-MM-DD等
在上面的代码中,函数catchTime就是判断item是否为时间对象,是的话转化为时间对象。
代码如下:
import time
import re
def catchTime(item):
# check if it's time
matchObj=re.match(r'\d{4}-\d{2}-\d{2}',item, flags= 0)
if matchObj!= None :
item =time.strptime(item,'%Y-%m-%d')
#print "returned time: %s " %item
return item
else:
matchObj=re.match(r'\d{4}/\d{2}/\d{2}\s\d+:\d+:\d+',item,flags=0 )
if matchObj!= None :
item =time.strptime(item,'%Y/%m/%d %H:%M:%S')
#print "returned time: %s " %item
return item
完整代码:
import collections
import time
import re
class UserInfo(object):
'Class to restore UserInformation'
def __init__ (self):
self.attrilist=collections.OrderedDict()# ordered
self.__attributes=[]
def updateAttributes(self,attributes):
self.__attributes=attributes
def updatePairs(self,values):
for i in range(len(values)):
self.attrilist[self.__attributes[i]]=values[i]
def catchTime(item):
# check if it's time
matchObj=re.match(r'\d{4}-\d{2}-\d{2}',item, flags= 0)
if matchObj!= None :
item =time.strptime(item,'%Y-%m-%d')
#print "returned time: %s " %item
return item
else:
matchObj=re.match(r'\d{4}/\d{2}/\d{2}\s\d+:\d+:\d+',item,flags=0 )
if matchObj!= None :
item =time.strptime(item,'%Y/%m/%d %H:%M:%S')
#print "returned time: %s " %item
return item
def ObjectGenerator(maxlinenum):
filename='/home/thinkit/Documents/usr_info/USER.csv'
attributes=[]
linenum=1
a=UserInfo()
file=open(filename)
while linenum < maxlinenum:
values=[]
line=str.decode(file.readline(),'gb2312')#linecache.getline(filename, linenum,'gb2312')
if line=='':
print'reading fail! Please check filename!'
break
str_list=line.split(',')
for item in str_list:
item=item.strip()
item=item.strip('\"')
item=item.strip('\'')
item=item.strip('+0*')
item=catchTime(item)
if linenum==1:
attributes.append(item)
else:
values.append(item)
if linenum==1:
a.updateAttributes(attributes)
else:
a.updatePairs(values)
yield a.attrilist #change to ' a ' to use
linenum = linenum +1
if __name__ == '__main__':
for n in ObjectGenerator(10):
print n #输出字典,看是否正确
总结
以上就是这篇文章的全部内容,希望能对大家的学习或者工作带来一定帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13