
大数据引导生物医学变革
大数据影响的深度和广度仍在不断扩张。对于生物医学来说,其发展过程中积淀的数据资源,是大数据时代的基础之一。而大数据的挖掘和应用,反过来也在引发着生物医学的变革。
在此次论坛上,专家们围绕“大数据在医学科技创新中的应用”这一话题,进行了深入的交流探讨。与会专家指出,生物大数据已经成为欧美国家重要的发展战略,而我国生物医学大数据开发同发达国家尚有一定差距,亟须加强相关研究和投入。
大数据引发医学研究变革
“大数据是大趋势,使得生产资料中首次出现了非物质成分:数据。世界正在由资本经济时代向数据经济时代过渡,数据及其服务成为国家战略和经济的基础设施。”军事医学科学院研究员朱云平长期从事生物信息学综合数据库及平台建设研究,在他看来,生物和医疗领域已成为重要的大数据领域。
中国工程院院士、中日友好医院院长王辰指出,大数据时代的来临,加上转化医学的兴起,在我国形成了历史性契机,可望使中国医学研究实现历史性跨越。
首都医科大学附属北京安贞医院心脏内科中心主任马长生正在承担“北京市心血管疾病防控大数据平台建设”的工作,在他的研究中,包括用大数据手段研究环境和心血管疾病的关系。“用大数据的手段,每日不同站点PM2.5浓度与心血管疾病的关系,甚至股票波动与心血管疾病的关系,都可以得到预测。”
“美国发布的年度癌肿报告,其实是一份恶性肿瘤大数据分析报告。”中国医学科学院肿瘤医院副院长王绿化介绍,中国正在建设脑肿瘤大数据平台,旨在提供数据样本资源库,同时为八大肿瘤建立知识库和分析库。
而事实上,大数据不仅为生物医学研究带来了新的技术手段,还具有大规模降低医疗费用的潜在效益。根据美国BCC research公司研究显示,仅就与高通量测序相关的组学大数据而言,至2018年,其市场总额将增长至76亿美元,复合年增长率达到71%。麦肯锡全球研究院报告,如果美国医疗保健行业对大数据进行有效利用,就能把成本降低8%左右,从而每年创造出超过3000亿美元的产值。
发达国家经验与挑战
大数据科学与产业具有较强的领域相关性,生物大数据已经成为欧美国家重要的发展战略,也是美国国家大数据计划的重要组成部分。
朱云平介绍,欧美主导的国际生命科学计划产生的数据和知识,已成为重要的国家资源。例如国际人类基因组单体型图计划、DNA元件百科全书计划、人类表观基因组计划、国际癌基因组计划、千人基因组计划等,这些计划形成的数据资源潜在价值十分巨大。
2009年,美国出台HITECH法案,将医疗卫生信息化列为重点发展方向,十年内累计投入2760亿美元。加拿大也在规划EHRS蓝图,旨在全面推进国家医疗信息化、电子监控档案建设。英国10年内投入超过120亿英镑,用于建设全国一体化的医疗信息系统。欧盟则发力统一的e-health体系建设,10年投入超过60亿欧元。
但在我国,却存在缺失生物数字主权的尴尬。近年来中国学者在国外发表了众多学术论文,在发文章时,需要先把数据传输给国外杂志社。“在国外发表文章后,名义上是说可以获得数据共享,但中国学者需要的许多数据并不是想拿就能拿到的。”朱云平说。
朱云平指出,我国医疗数据几乎不能共享,转化利用率低。而美国目前已经初步实现了社区、医院、区域的医疗数据共享系统。现实导致我国缺少自主知识产权的高价值生物数据库,且我国生物大数据分析能力严重不足。
这使得中国学者在使用国外数据时,必须支付高昂的费用。例如,世界最为权威的代谢通路数据库KEGG,其使用费为每年5000美元。权威的人类疾病相关变异数据库HGMD,其年费是3725美元。权威的药物基因组变异与药物反应数据库PGMD,其年费也达3735美元。
生物大数据事关国家未来战略
去年9月谷歌公司宣布成立Calico公司,利用大数据进行人类衰老及相关疾病方面的研究。亚马逊通过其云平台托管国际千人基因组计划庞大数据库,并免费开放。微软也启动了microsoft biology initiative项目,进军生物医学大数据领域。据悉,美国已建成覆盖本土的12个区域电子病历数据中心、9个医疗知识中心和8个医学影像与生物信息数据中心。
但是,我国生物医学大数据产业尚未形成。朱云平说,我国迫切需要建立国家级生物大数据技术研发基地。
所幸的是,国家“863”计划2015年度项目申报指南中,在生物和医药技术领域已经部署“生物大数据开发与利用关键技术研究”,涉及的内容包括生物大数据标准化和集成、融合技术,生物大数据表述索引、搜索与存储访问技术,心血管疾病和肿瘤疾病大数据处理分析与应用研究,机遇区域医疗与健康大数据处理分析与应用研究,组学大数据中心和知识库构建与服务技术等。
“生物医学大数据开发与利用,应面向我国生物数据汇集、管理、共享与利用的重大需求,重点突破生物大数据质量控制、集成融合、索引组织、存储管理、搜索访问、数据可视化、分析建模、知识库构建等关键技术。”朱云平建议。
加强专业人才培养也尤为迫切。王辰指出,为适应生物医学大数据的发展,应在生物医学领域加强计算机科学、数据库专业人员的培养,加强流行病学、统计分析、信息学人员、标本库管理人员的培养。
不过,生物医学大数据也存在一定的风险。大数据中心的可靠性和隐私保护是其中的关键。
“数据中心崩溃的风险,可以通过在不同地域、不同条件下进行生物大数据存储,再进行协同整合来解决。但在生物大数据的分析应用中,需要收集一切已知的生物信息,这与隐私保护存在冲突。”朱云平认为,如何在应用生物大数据的同时,更好地保护个人隐私信息,需要深入研究。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28