
大数据时代的语言研究不能忽视的因果
大数据是近年兴起的概念,大体上是指通过一系列精炼、提取、分析,从庞杂、无序、多维的信息中获取情报的一种方法。大数据研究让我们有能力驾驭海量信息,使得以往变化莫测、捉摸不透的自然、社会现象,变得模式凸显,有章可循。这不仅让许多科学猜想获得实证检验的机会,也极大地加速了新理论、新假说的产生。
语言学领域的大数据研究最吸引人的领域是自然语言处理。通过数学统计和机器算法,可以让机器学习人类的语言使用,从大量语言信息中搜寻有规律、重复出现的模式,并不断让机器识别、记录和改进这些模式,以实际应用于人工智能的诸多领域。此项突破在人类语言应用方面前所未有。语言大数据研究另一个重要领域是理性主义研究。这类研究通常带有一定的理论预设,通过大规模语料的分析和计算,找出字、词、句在历时和共时上的分布规律,从而为社会语言变迁、语音语法演变、语言共性规律、语言类型学划分等研究提供一定的实证支持,是一种较为科学的描写性分析。
在当前大数据风起云涌的时代,秉持此研究理念的学者坚信这种研究方法开启了一次重大的时代变革,甚至提出“要相关,不要因果”的口号。那么,语言研究者是否应该倾力研究诸多“变量”之间的相关性,而无须考虑事物之间的因果关系呢?既然我们有了精深的统计知识和机器算法,可以在机器翻译、语音识别、语言共性规律等方面取得以往不可能实现的成就,那么我们还需要各种探索因果关系的理论吗?换言之,如果机器可以按自己的“思维”方式实现人类语言的交际功能和研究人类语言的功能,我们何必花时间探索语言背后的哲学基础?何必思考语言现象内在的因果关系?
答案显然是否定的。笔者认为,人类对因果关系的渴求受到与生俱来的好奇心驱动,是人类独特的理性力量。不管是“小”数据年代,还是大数据时代,人类都乐于对事物之间的关联作出判断,理性地探索那些最本质的因果关系。大数据固然有助于人们在这方面的探索,但人们不可能靠它一劳永逸地解决所有问题。这是由大数据本身的性质所决定的。
大数据 “大”的原因有两方面:一方面是在同样的参数、变量的情况下,尽可能增加观察、记录的次数,从而扩大数据规模;二是在同一次观察、记录中,尽可能地增加参数、变量的数目,也同样能扩大数据规模。在现实研究中,这两个因素经常同时相互起作用。然而,数据规模虽可无限扩大,但仍非决定人们因果推断能力的根本因素。问题不妨这样看:随着观察次数增加,基于某个统计模型的估计值,其精确度就有可能不断提高。然而,问题在于是否观察次数越多,这个模型就可以自动消除因为某个变量缺失而带来的计算偏差。举个简单的例子:假设在一座城市有甲、乙两家医院,通过数十年不间断的数据收集,我们发现在去过两家医院的患者中,甲医院死亡率非常高,而乙医院死亡率很低,那么,我们是否就可以得出甲医院差,而乙医院好呢?答案是否定的!因为我们忽略了一个重要的外生变量,即甲医院级别更高,收治了更多病情严重的病人;而乙医院级别较低,只能治疗一些小病。这就是统计学上所谓的“遗漏变量偏差”。可见,即使我们积累了数十年多次观察的数据,仍可能未触及最根本因果问题。因此,解决问题不在于大数据的“大”,而更在于是否在数据采集和统计模型选择时有较高层次的理论指导。
另一方面,如果说增加观察次数并不会实质提高发现因果关系的可能性,那么是否可以在同一次观察、记录中,尽可能增加相关参数、变量的数目、种类,来改变这种状况?此想法看似合理,但仍不完全可行。虽然通过各种复杂精妙统计学方法,可以把复杂的数据降维,得出有价值的线性回归模型;姑且不论随着变量增加,是否对统计模型产生影响,最核心的问题还在于这样的研究存在一个前提假设,即观察、记录的变量必然包含了能够引发因果关系的所有变量,但事实往往并非如此。举例来说,2015年,美国迈阿密大学的凯莱布·埃弗里特(C. Everett)及其同事考察了3700多种语言,其中629种语言有复杂的声调,通过独立样本检验,他们发现声调类型复杂的语言更多出现在气候湿润的地区,而声调单一或无声调的语言更可能出现在气候干燥地区。埃弗里特提供的解释是干燥的空气容易使得发音器官脱水,降低声带弹性;在气候干冷的环境下,发出复杂声调比在温润的环境下要困难得多。这种因果推断似是而非,但颇受欢迎。
仅一年后,荷兰内梅亨大学的杰里米·柯林斯(Jeremy Collins)就针对这篇文章的结论提出严重质疑。他认为,由于人类语言大多聚集在气候湿润地区,埃弗里特及其团队所谓的“随机样本”很可能是取自同一个气候湿润的地区。这些地区聚集着为数众多的语言,它们之间还可能具有亲缘关系,而就是这个“亲缘关系”的变量被埃弗里特及其团队忽略。事实上,荷兰的柯林斯通过另外一种数据收集方法(在同一个语系随机选取一个语言,然后在该语系谱系树中再随机选取其他语言),得出语言接触是重要的干扰因素,可以在全球范围内产生声调与气候湿润积极关联。柯林斯认为,语言接触、语言的地理分布,甚至地理地貌特征均是干扰声调和气候相关性的因素。虽然美国埃弗里特研究了近半数的人类语言,但由于没有考虑这些因素,因此他们的结论并不可靠。汉语是有调类语言,也引起了国际语言学家的广泛关注。桥本龙太郎(Hashimoto Riotaro)很早就指出,汉语越往南的方言,调类越多,而越往北的,调类越少。北方汉语之所以调类少,是受了阿尔泰语的影响。那些侵入中原地区的族群,受汉族影响,改用汉语,但他们讲的汉语仅保留了有限声调类型。当前汉语与阿尔泰语接触的最前沿是兰银官话,只有两三种声调,而与粤语相邻的方言则声调类型丰富。可见,如果缺乏对社会、文化、历史以及类型学理论知识的把握,大规模数据的研究并不总会产生有价值的科学发现,甚至会得出误导性的“虚假相关”。这足以引起警惕。
我们认为,大数据的“大”并不足以改变人们因果推理的能力。本质上,我们仍然需要一个坚实、强大的理论来指导我们收集数据和设定模型。人类不会也不可能一劳永逸地仅依靠机器实现从提出假说到实践检验的全过程。一些学者提出“只要相关,不要因果”的口号其实是针对大数据研究中找出可复现模式的能力而言的。但是,语言学研究和其他科学研究一样,并不是仅找寻相关性和可复现模式的活动。语言研究者需要保持好奇心和批评性思维,特别是追求根本性因果关系的决心。只有这样,才是大数据时代语言学研究发展的正确方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10