京公网安备 11010802034615号
经营许可证编号:京B2-20210330
何为大数据
唐太宗说过:以铜为鉴,可以正衣冠,以人为鉴,可以明事理,以史为鉴,可以知兴替。说白了,大数据就是借鉴曾经的甚至正在进行的价值信息,来对需求进行优化和处理。而这里的优化和处理分析就用到了我们所说的大数据。
知己知彼,百战不殆。
什么是大数据呢?
特点:灵活性,时效性,易用性。
1,数据的收集和准备(Flume,Sqoop),2,数据的存储(HDFS,Hbase),3,数据的资源管理(YARN),4,计算框架(MapReduce,Spark),5,数据的分析(R),6,数据的展示(D3).
从技术上来说,大数据就是,根据自己的需求,从互联网、物联网、企业等抓取出各种大量的结构化数据(DB),半结构化(文件),和非结化的数据(文件),其中也会含有各种实时流数据(日志)。这些数据通过sqoop2组件存储到HDFS中,这里的sqoop组件在这里是:提取数据的作用。
HDFS是我们这个大数据的一个总存储,有着类似“系统”的作用,他可以分为多个Namenode和和datanode组合。Namenode中存储着这些数据的元数据,而各种需求数据实际存储在各个的datanode中。所以在从HDFS中提取数据时都会询问namenode得到数据位置后再去datanode中取数据。其中会需要HDFS中专门的组件。
得到我们需求的数据后,我们要处理这些数据,为了高效处理和资源的充分利用,我们用到了YARN这个组件,YARN得到用户作业后,告诉其中的一个“司令官”(RM),司令官询问“参谋官”(AM)HDFS哪个节点上有空闲场地来进行工作,参谋官找到空闲场地后,生成一个NM节点,也就是作业场地进行工作。期间RM和AM都会根据需求进行场地的协调。
有了场地,我们就可以处理这些数据,这就用到了MapReduce或者Spark等计算框架,这里我们讲一下MapReduce,他分为Map和Reduce。Map用来把信息根据需求划分提取出来,Reduce再把提取出来的需求信息整合到一起。因为需求不同,我们的计算框架也是不同的。
得到上一步中提取的需求数据,我们就会对数据进行分析处理。此刻我们用到了R这个组件进行数据分析,分析后得到一些结果
得到的结果再用R进行数据展示。
比如一个物流公司:
贵公司中的物流信息正需要大数据来进行优化,根据大数据来处理:车货匹配、运输线路分析、销售预测与库存、供应链协同管理等。可以有效的为贵公司提高效益,带来方便,减少损失。
比如,我见过某快递公司门前很多运送车辆,两三天配不上货也是正常的事,放在那浪费资源。如果用到我们的大数据来分析,全国哪些地方网上购物量大,需求车辆多或者少,这样我们就知道那个地方放几辆车合适。这样就会实现车货的高效匹配。甚至还可以有效解决公共信息平台上没有货源或货源信息虚假。
我们知道了各个地方对各个货物需求量的信息后,就会把需求的货物量运送过去,这又用到了大数据分析,大数据分析出最短化、最优化的运输路线。这样节省了时间,就会运输更多的货物。运输过程中,每个车辆零件都会有一定的寿命,根据分析,我们就会设备修理预测,进行防御性的修理。如果没有我们的分析,就会造成延误和再装载的负担,并消耗大量的人力、物力。
把货物运过去后,根据货物量,就会对库存结构和降低库存存储成本。
需求预测、库存计划、资源配置、设备管理、渠道优化、生产作业计划、物料需求与采购计划,供应链协同管理。
订单、产能、调度、库存和成本间的关系,需要大量的数学模型、优化和模拟技术
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30