
何为大数据
唐太宗说过:以铜为鉴,可以正衣冠,以人为鉴,可以明事理,以史为鉴,可以知兴替。说白了,大数据就是借鉴曾经的甚至正在进行的价值信息,来对需求进行优化和处理。而这里的优化和处理分析就用到了我们所说的大数据。
知己知彼,百战不殆。
什么是大数据呢?
特点:灵活性,时效性,易用性。
1,数据的收集和准备(Flume,Sqoop),2,数据的存储(HDFS,Hbase),3,数据的资源管理(YARN),4,计算框架(MapReduce,Spark),5,数据的分析(R),6,数据的展示(D3).
从技术上来说,大数据就是,根据自己的需求,从互联网、物联网、企业等抓取出各种大量的结构化数据(DB),半结构化(文件),和非结化的数据(文件),其中也会含有各种实时流数据(日志)。这些数据通过sqoop2组件存储到HDFS中,这里的sqoop组件在这里是:提取数据的作用。
HDFS是我们这个大数据的一个总存储,有着类似“系统”的作用,他可以分为多个Namenode和和datanode组合。Namenode中存储着这些数据的元数据,而各种需求数据实际存储在各个的datanode中。所以在从HDFS中提取数据时都会询问namenode得到数据位置后再去datanode中取数据。其中会需要HDFS中专门的组件。
得到我们需求的数据后,我们要处理这些数据,为了高效处理和资源的充分利用,我们用到了YARN这个组件,YARN得到用户作业后,告诉其中的一个“司令官”(RM),司令官询问“参谋官”(AM)HDFS哪个节点上有空闲场地来进行工作,参谋官找到空闲场地后,生成一个NM节点,也就是作业场地进行工作。期间RM和AM都会根据需求进行场地的协调。
有了场地,我们就可以处理这些数据,这就用到了MapReduce或者Spark等计算框架,这里我们讲一下MapReduce,他分为Map和Reduce。Map用来把信息根据需求划分提取出来,Reduce再把提取出来的需求信息整合到一起。因为需求不同,我们的计算框架也是不同的。
得到上一步中提取的需求数据,我们就会对数据进行分析处理。此刻我们用到了R这个组件进行数据分析,分析后得到一些结果
得到的结果再用R进行数据展示。
比如一个物流公司:
贵公司中的物流信息正需要大数据来进行优化,根据大数据来处理:车货匹配、运输线路分析、销售预测与库存、供应链协同管理等。可以有效的为贵公司提高效益,带来方便,减少损失。
比如,我见过某快递公司门前很多运送车辆,两三天配不上货也是正常的事,放在那浪费资源。如果用到我们的大数据来分析,全国哪些地方网上购物量大,需求车辆多或者少,这样我们就知道那个地方放几辆车合适。这样就会实现车货的高效匹配。甚至还可以有效解决公共信息平台上没有货源或货源信息虚假。
我们知道了各个地方对各个货物需求量的信息后,就会把需求的货物量运送过去,这又用到了大数据分析,大数据分析出最短化、最优化的运输路线。这样节省了时间,就会运输更多的货物。运输过程中,每个车辆零件都会有一定的寿命,根据分析,我们就会设备修理预测,进行防御性的修理。如果没有我们的分析,就会造成延误和再装载的负担,并消耗大量的人力、物力。
把货物运过去后,根据货物量,就会对库存结构和降低库存存储成本。
需求预测、库存计划、资源配置、设备管理、渠道优化、生产作业计划、物料需求与采购计划,供应链协同管理。
订单、产能、调度、库存和成本间的关系,需要大量的数学模型、优化和模拟技术
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26