京公网安备 11010802034615号
经营许可证编号:京B2-20210330
金融业的未来是大数据风控
有人曾把大数据比喻成“新时代的石油”。业界也有句话叫,得数据者得天下。现如今,在大数据时代下,数据比以往任何时候都更加根植于我们生活中的每个角落。
其实早在上个世界80年代,大数据就被著名未来学家阿尔文·托夫勒在《第三次浪潮》一书中赞颂为“第三次浪潮”。不过直到21世纪第一个10年,“大数据”才成为互联网信息技术行业的流行词汇。
进入2013年后,互联网金融火爆崛起,才真正意义上将“大数据”推向高潮。随之而来的人工智能,生物识别等“黑科技”,为大数据注入了更多的想象空间,而这其中延伸出来的金融科技,除阿里、腾讯、百度、京东等巨头早已强势入局外,也涌现除了诸如云蜂科技这样以独立第三方大数据风控服务商身份出现的新星。
大数据风控成为金融机构核心环节
向来,把住风险是优秀金融家的底线,风险管理更是金融业立身之本,金融家稳健甚至保守是行业的优良文化传统。
我们看到,近几年线上理财、互联网保险、ABS等等的创新屡见不鲜,但它们之中不乏一些以技术创新为名,到最后暴露出来的只不过是令人眼花缭乱的“庞氏骗局”,泡沫破灭、平台跑路,殃及众多投资者。
深究这背后的一个关键因素,其实就是所有互联网特别是金融机构无法回避的一个问题——风险控制。
“金融的核心环节还是风控,行业的健康成长也有赖于此。”云蜂科技杨立恒表示,互联网金融不是简单的,将传统金融服务模式搬到线上,平台的核心竞争力也不是营销获客能力,而是保证一个平台能长久活下去的大数据风控能力。
在杨立恒看来,互联网大数据的积累已经让风控进入2.0时代。通过数据的积累,实现了客户开发和数据采集,然后经过后台的风控模型运算得出结果,最终达到控制风险的目的。
目前,金融机构除搜集自有平台的数据外,也在积极与外部机构合作进行大数据风控。因此,抛开中国人民银行的征信数据外,平台与平台间、平台与专业的大数据风控服务商之间的打通、交流和数据共享将成为金融机构进行风险控制的重要一环。
“云蜂科技其实就是一家专注于前沿大数据及人工智能技术在金融领域应用的公司“,杨立恒说,云蜂科技通过提供大数据挖掘,采集与分析,风控系统,风控模型,SaaS级业务系统等科技产品服务,帮助各类互联网平台,金融机构创造价值。
大数据风控,革新金融业未来的点睛术
无疑,随着国家监管的加强,和大数据等前沿技术的成熟应用,信息不对称正在得到解决。随之而来的,留给还在伺机投机骗子们的时间和空间也不多了,他们的“水逆”将比以往更狠、更持久。
而硬币的另一面,“危”中有“机”,金融科技(Fintech)的美好,绝不会因少数投机倒把平台的倒下而凋零,大浪淘沙后,越来越多有实力的新贵将异军突起,带着金融科技光环的大数据风控服务商,诸如云蜂科技等将乘着Fintech的风口迎来真正的繁荣。
事实也是,阿里旗下的蚂蚁金服、腾讯旗下的微信支付以及苹果支付等巨头都在通过自己的优势布局金融科技领域。
时至今日,蚂蚁金服通过蚂蚁花呗、蚂蚁信用、蚂蚁保险等诸多产品围绕着支付宝,将人们生活的环节更多地以金融的方式进行呈现;而在社交领域深耕的腾讯,则通过微信支付将金融更多的与社交联系在一起,从而建立了一个以社交为主要特征的金融体系,红包、打赏等产品的出现就是这一趋势的主要体现。
从巨头布局金融科技的逻辑上,也让我们窥见金融科技已经切实改变人们的生活方式。
“除了金融表现形式之外,对于金融流程的改造同样成为未来新技术的改造重点。”杨立恒说,云蜂科技的初衷,就是为了打通各方数据,并通过人工智能、生物识别等技术,来减少金融机构现金面临的人为判断造成的风控不及时、不全面等问题。
“人工智能在金融领域的应用,目前集中在金融服务自动化、产品个性化、降低欺诈、智能客服、质量管理、贷后管理等多个方面。”
杨立恒认为,作为金融业务核心的风控领域,“人工智能+大数据”将有能力解决金融机构遇到的瓶颈,为其迭代升级发挥至关重要的作用。
不可否认,大数据风控的诞生,为“人工智能+产融结合”填了空白,补了短板。按照4月份国家金融工作会议的精神“变革金融服务触达,提高金融体系的功能,提振实体经济”,以大数据风控为代表的金融科技,正在革新金融未来,带领中国走入“新金融”时代。
“大数据时代,金融机构只有把关乎生存命脉的风控做好,才能在下一轮竞争中屹立不倒”,杨立恒说。
凯文-凯利曾经预言,金融将会成为我们生活当中的一部分。随着未来人们生活的科技化,生活当中的科技元素将会越来越多,最终,人们的生活同样将会变成一个非常具有科技化特点的存在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12