京公网安备 11010802034615号
经营许可证编号:京B2-20210330
金融业的未来是大数据风控
有人曾把大数据比喻成“新时代的石油”。业界也有句话叫,得数据者得天下。现如今,在大数据时代下,数据比以往任何时候都更加根植于我们生活中的每个角落。
其实早在上个世界80年代,大数据就被著名未来学家阿尔文·托夫勒在《第三次浪潮》一书中赞颂为“第三次浪潮”。不过直到21世纪第一个10年,“大数据”才成为互联网信息技术行业的流行词汇。
进入2013年后,互联网金融火爆崛起,才真正意义上将“大数据”推向高潮。随之而来的人工智能,生物识别等“黑科技”,为大数据注入了更多的想象空间,而这其中延伸出来的金融科技,除阿里、腾讯、百度、京东等巨头早已强势入局外,也涌现除了诸如云蜂科技这样以独立第三方大数据风控服务商身份出现的新星。
大数据风控成为金融机构核心环节
向来,把住风险是优秀金融家的底线,风险管理更是金融业立身之本,金融家稳健甚至保守是行业的优良文化传统。
我们看到,近几年线上理财、互联网保险、ABS等等的创新屡见不鲜,但它们之中不乏一些以技术创新为名,到最后暴露出来的只不过是令人眼花缭乱的“庞氏骗局”,泡沫破灭、平台跑路,殃及众多投资者。
深究这背后的一个关键因素,其实就是所有互联网特别是金融机构无法回避的一个问题——风险控制。
“金融的核心环节还是风控,行业的健康成长也有赖于此。”云蜂科技杨立恒表示,互联网金融不是简单的,将传统金融服务模式搬到线上,平台的核心竞争力也不是营销获客能力,而是保证一个平台能长久活下去的大数据风控能力。
在杨立恒看来,互联网大数据的积累已经让风控进入2.0时代。通过数据的积累,实现了客户开发和数据采集,然后经过后台的风控模型运算得出结果,最终达到控制风险的目的。
目前,金融机构除搜集自有平台的数据外,也在积极与外部机构合作进行大数据风控。因此,抛开中国人民银行的征信数据外,平台与平台间、平台与专业的大数据风控服务商之间的打通、交流和数据共享将成为金融机构进行风险控制的重要一环。
“云蜂科技其实就是一家专注于前沿大数据及人工智能技术在金融领域应用的公司“,杨立恒说,云蜂科技通过提供大数据挖掘,采集与分析,风控系统,风控模型,SaaS级业务系统等科技产品服务,帮助各类互联网平台,金融机构创造价值。
大数据风控,革新金融业未来的点睛术
无疑,随着国家监管的加强,和大数据等前沿技术的成熟应用,信息不对称正在得到解决。随之而来的,留给还在伺机投机骗子们的时间和空间也不多了,他们的“水逆”将比以往更狠、更持久。
而硬币的另一面,“危”中有“机”,金融科技(Fintech)的美好,绝不会因少数投机倒把平台的倒下而凋零,大浪淘沙后,越来越多有实力的新贵将异军突起,带着金融科技光环的大数据风控服务商,诸如云蜂科技等将乘着Fintech的风口迎来真正的繁荣。
事实也是,阿里旗下的蚂蚁金服、腾讯旗下的微信支付以及苹果支付等巨头都在通过自己的优势布局金融科技领域。
时至今日,蚂蚁金服通过蚂蚁花呗、蚂蚁信用、蚂蚁保险等诸多产品围绕着支付宝,将人们生活的环节更多地以金融的方式进行呈现;而在社交领域深耕的腾讯,则通过微信支付将金融更多的与社交联系在一起,从而建立了一个以社交为主要特征的金融体系,红包、打赏等产品的出现就是这一趋势的主要体现。
从巨头布局金融科技的逻辑上,也让我们窥见金融科技已经切实改变人们的生活方式。
“除了金融表现形式之外,对于金融流程的改造同样成为未来新技术的改造重点。”杨立恒说,云蜂科技的初衷,就是为了打通各方数据,并通过人工智能、生物识别等技术,来减少金融机构现金面临的人为判断造成的风控不及时、不全面等问题。
“人工智能在金融领域的应用,目前集中在金融服务自动化、产品个性化、降低欺诈、智能客服、质量管理、贷后管理等多个方面。”
杨立恒认为,作为金融业务核心的风控领域,“人工智能+大数据”将有能力解决金融机构遇到的瓶颈,为其迭代升级发挥至关重要的作用。
不可否认,大数据风控的诞生,为“人工智能+产融结合”填了空白,补了短板。按照4月份国家金融工作会议的精神“变革金融服务触达,提高金融体系的功能,提振实体经济”,以大数据风控为代表的金融科技,正在革新金融未来,带领中国走入“新金融”时代。
“大数据时代,金融机构只有把关乎生存命脉的风控做好,才能在下一轮竞争中屹立不倒”,杨立恒说。
凯文-凯利曾经预言,金融将会成为我们生活当中的一部分。随着未来人们生活的科技化,生活当中的科技元素将会越来越多,最终,人们的生活同样将会变成一个非常具有科技化特点的存在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27