京公网安备 11010802034615号
经营许可证编号:京B2-20210330
零售商的大数据难题:技术外包还是内包
对于零售商来说,大数据是一把双刃剑。这些公司正在努力探索全方位的市场竞争,因为他们试图抵御像亚马逊公司这样的行业巨头,一些公司正在将大量资源部署到开发自己的大数据解决方案中,以试图与零售巨头进行竞争。
零售商面临的一个问题是他们需要内部构建还是应该将其外包给供应商。
随着软件即服务(SaaS)模式的普及,在企业环境中部署新的解决方案变得越来越简单和快速。这自然会导致行业不断增长的创新,因为传统的解决方案在短短几个星期内就容易被更新颖,更有效的解决方案所替代。
同时,大型零售商希望在公司内部开发解决方案的愿望,就像亚马逊在内部技术上投入大量资金,自己开发很多产品。然而,重要的是要意识到,并不是所有的产品和解决方案都可以或应该在内部建设。零售商应将基础设施视为数据平台,供应商以同样的方式进行创新,MAC和Android平台允许个别开发人员通过应用程序进行创新。
人们相信,云计算算法将在未来几年成为最常见的SaaS应用程序。把算法作为“核心竞争力”并将其发展局限于内部团队的零售商,只会扼杀技术创新,从长远来后将会落后。在这里列出其原因。
成本
伟大的算法解决方案需要核心人才。这些人才的竞争是十分激烈的,特别是数据科学。数据科学家通常具有计算机科学,统计学或数学方面的博士学位,其薪资超过15万美元。
由于市场上优秀的工程师和数据科学家的供应有限,这些工程师更多的是应聘初创公司或亚马逊,Google和Facebook等技术巨头的职位。不幸的是,大多数实体和在线零售商并不会成为顶尖工程师的目的地。因此,零售商必须通过支付更高薪金来弥补。
通过简单的数学计算表明,一个由20位数据科学家和工程师的团队可以将会让零售商每年花费400万美元的费用。而这只是招聘人才的费用,并没有包括来支持解决方案开发的任何基础设施的投资。相比之下,典型的SaaS解决方案每年的价格将低于100万美元(这可能是绝对的上限,传统的费用将低于50万美元)。通过与供应商合作,零售商可以节省大量的成本。
快速上市和灵活性
对于任何技术初创企业来说,快速推出市场是确定整体成功的关键。这包括内部技术的发展。从项目开始到启动,成功创建一个大数据解决方案可能需要2-3年的时间。虽然需要立即获得解决方案是一个亟待解决的问题,但技术的生命周期并不能绕过。两年的等待时间可能会造成一两个问题:公司新开发的解决方案在启动时几乎已经过时,或者试图领先于快速发展的技术环境,陷入无休止的重新设计周期中。
同时,随着基于云计算的SaaS模式的广泛应用,第三方解决方案的集成和部署速度从未如此快速。有些可以在短短的20天内集成和部署,这意味着尖端技术不断改进(算法在世界上最大的零售商不断优化和调整),快速满足即时需求。更重要的是,第三方供应商还提供了内部构建系统不具备的灵活性。删除和替换第三方SaaS解决方案非常简单,而不用担心昂贵的成本和内部斗争。
创新
技术和算法的进步非常快。纵观历史,竞争在创新中起着至关重要的作用。SaaS模型使其既易于部署又易于更换解决方案。因此,供应商正在不断创新,并面临改进的压力。当拥有内部团队,这个选择已经做出,因此没有竞争。一旦构建和部署解决方案,团队的目标就是维护和改进解决方案。但人们绝对不会知道内部团队的解决方案是否具有市场竞争力。
通过与第三方SaaS供应商合作,零售商能够在短时间内评估和部署许多尖端解决方案,同时投资更少。许多其他零售商都在使用这些解决方案,供应商经过不断的审查,得到客户的创新和改进。试图在内部构建这些解决方案不仅成本高昂而且进度缓慢,而且最重要的是限制创新,从而使企业的业务从长远来看并不那么灵活。
这并不意味着零售商应该将所有技术完全外包给供应商。当人们在大数据的背景下谈论技术时,它们指的是存储和处理数据的基础设施,以及解释数据和做出预测的算法。基础架构包括以安全,隐私保护的方式存储全方位的客户数据,如购买的优惠券,并使支持应用程序可访问该数据。
算法是基础设施之上的有效应用,利用数据来进行需求预测,流失预测,动态定价或产品个性化和定位。它们建立在数据基础之上,与操作系统之上的应用程序相同。因此,零售商必须投入内部资源和大量时间来建立安全,高效和可扩展的基础架构。
具有外部API和安全性(敏感数据加密)的正确基础设施将使企业能够利用供应商的尖端技术,不断创新。这将使企业将注意力和专业知识集中在核心业务功能上,而不是试图成为无关领域的专家。对于任何企业来说,资金,时间和研发能力都是有限的。成功的企业知道如何将这些资源放在正确的地方来获得成功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27