
零售商的大数据难题:技术外包还是内包
对于零售商来说,大数据是一把双刃剑。这些公司正在努力探索全方位的市场竞争,因为他们试图抵御像亚马逊公司这样的行业巨头,一些公司正在将大量资源部署到开发自己的大数据解决方案中,以试图与零售巨头进行竞争。
零售商面临的一个问题是他们需要内部构建还是应该将其外包给供应商。
随着软件即服务(SaaS)模式的普及,在企业环境中部署新的解决方案变得越来越简单和快速。这自然会导致行业不断增长的创新,因为传统的解决方案在短短几个星期内就容易被更新颖,更有效的解决方案所替代。
同时,大型零售商希望在公司内部开发解决方案的愿望,就像亚马逊在内部技术上投入大量资金,自己开发很多产品。然而,重要的是要意识到,并不是所有的产品和解决方案都可以或应该在内部建设。零售商应将基础设施视为数据平台,供应商以同样的方式进行创新,MAC和Android平台允许个别开发人员通过应用程序进行创新。
人们相信,云计算算法将在未来几年成为最常见的SaaS应用程序。把算法作为“核心竞争力”并将其发展局限于内部团队的零售商,只会扼杀技术创新,从长远来后将会落后。在这里列出其原因。
成本
伟大的算法解决方案需要核心人才。这些人才的竞争是十分激烈的,特别是数据科学。数据科学家通常具有计算机科学,统计学或数学方面的博士学位,其薪资超过15万美元。
由于市场上优秀的工程师和数据科学家的供应有限,这些工程师更多的是应聘初创公司或亚马逊,Google和Facebook等技术巨头的职位。不幸的是,大多数实体和在线零售商并不会成为顶尖工程师的目的地。因此,零售商必须通过支付更高薪金来弥补。
通过简单的数学计算表明,一个由20位数据科学家和工程师的团队可以将会让零售商每年花费400万美元的费用。而这只是招聘人才的费用,并没有包括来支持解决方案开发的任何基础设施的投资。相比之下,典型的SaaS解决方案每年的价格将低于100万美元(这可能是绝对的上限,传统的费用将低于50万美元)。通过与供应商合作,零售商可以节省大量的成本。
快速上市和灵活性
对于任何技术初创企业来说,快速推出市场是确定整体成功的关键。这包括内部技术的发展。从项目开始到启动,成功创建一个大数据解决方案可能需要2-3年的时间。虽然需要立即获得解决方案是一个亟待解决的问题,但技术的生命周期并不能绕过。两年的等待时间可能会造成一两个问题:公司新开发的解决方案在启动时几乎已经过时,或者试图领先于快速发展的技术环境,陷入无休止的重新设计周期中。
同时,随着基于云计算的SaaS模式的广泛应用,第三方解决方案的集成和部署速度从未如此快速。有些可以在短短的20天内集成和部署,这意味着尖端技术不断改进(算法在世界上最大的零售商不断优化和调整),快速满足即时需求。更重要的是,第三方供应商还提供了内部构建系统不具备的灵活性。删除和替换第三方SaaS解决方案非常简单,而不用担心昂贵的成本和内部斗争。
创新
技术和算法的进步非常快。纵观历史,竞争在创新中起着至关重要的作用。SaaS模型使其既易于部署又易于更换解决方案。因此,供应商正在不断创新,并面临改进的压力。当拥有内部团队,这个选择已经做出,因此没有竞争。一旦构建和部署解决方案,团队的目标就是维护和改进解决方案。但人们绝对不会知道内部团队的解决方案是否具有市场竞争力。
通过与第三方SaaS供应商合作,零售商能够在短时间内评估和部署许多尖端解决方案,同时投资更少。许多其他零售商都在使用这些解决方案,供应商经过不断的审查,得到客户的创新和改进。试图在内部构建这些解决方案不仅成本高昂而且进度缓慢,而且最重要的是限制创新,从而使企业的业务从长远来看并不那么灵活。
这并不意味着零售商应该将所有技术完全外包给供应商。当人们在大数据的背景下谈论技术时,它们指的是存储和处理数据的基础设施,以及解释数据和做出预测的算法。基础架构包括以安全,隐私保护的方式存储全方位的客户数据,如购买的优惠券,并使支持应用程序可访问该数据。
算法是基础设施之上的有效应用,利用数据来进行需求预测,流失预测,动态定价或产品个性化和定位。它们建立在数据基础之上,与操作系统之上的应用程序相同。因此,零售商必须投入内部资源和大量时间来建立安全,高效和可扩展的基础架构。
具有外部API和安全性(敏感数据加密)的正确基础设施将使企业能够利用供应商的尖端技术,不断创新。这将使企业将注意力和专业知识集中在核心业务功能上,而不是试图成为无关领域的专家。对于任何企业来说,资金,时间和研发能力都是有限的。成功的企业知道如何将这些资源放在正确的地方来获得成功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28