京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的风口上,企业数据如何进行价值变现
对于大数据,研究机构Gartner给出了这样的定义:大数据是需要新处理模式,才能具有更强的决策力、洞察发现力和流程优化能力,来适应海量、高增长率和多样化的信息资产。
这两年可以看到越来越多的大数据公司诞生,试图挖掘公开数据这座矿山里的宝藏。大数据的价值不在数据本身,而在数据的应用上,而如何搭建应用场景,让大家对数据产生需求,正是大数据公司在做的事。
大数据公司到底在做什么?
企业信息查询和销售线索挖掘是企业数据应用的两个方向。
企业信息查询属于基础应用,如天眼查、企查查等数据平台,基于开放数据和共享的政府公共数据,实现数据采集、数据清洗、数据聚合和数据建模的一站式信息查询服务。在数据应用上,企查查偏向金融征信方面,通过与金融机构达成合作,获取第一手数据变动信息。对于个人用户,可以查到企业的工商信息、股东法人信息、诉讼失信信息等等;同时,企查查会给金融机构提供服务,并收取服务费,这也是其收入来源。而天眼查除了企业信息查询,还可以查到人和人、人和公司、公司和公司之间的关系,为用户在商业调查过程中提供关系信息支撑。
销售线索挖掘则是更深层次的大数据应用,将爬取到的互联网公开数据和来自政府机构等官方网站的工商信息,进行清洗和加工,构建可量化的用户画像,为不同领域的用户或企业提供销售解决方案。
譬如商理事,它是一个给企业销售人员提供线索的平台,用户在平台注册后就可以发布销售线索和合作资源,除了与天眼查合作开放数据,它的信息部分是来自用户自主上传,更类似于信息资源交换平台。
探迹则选择了不同的领域作为切入点,作为To B企业的销售预测解决方案提供商,探迹通过分析和挖掘全网在线企业数据信息,再结合企业内部的CRM系统,利用机器学习自动建立量化客户模型,为To B企业在全国数千万公司中精准挖掘潜在客户的线索。
可见,同样做大数据的公司,其具体业务也有根本差异,从企业信息查询到销售线索挖掘,企业数据逐渐向深层次、精细化的应用发展。
实际场景中的数据应用
个人篇
有时候,当求职者想应聘一家公司,除了官网信息和网络上的新闻,还有哪些渠道可以看到这家公司的具体信息呢?几乎没有,而对于求职者来说,了解公司是否合法成立、是否有拖欠工资等劳资纠纷行为是十分必要的,一个人想要搜集这些重要信息往往无从入手。
当投资者看中了一家初创企业,想了解更多的信息以决定是否投资的时候,除了基本的企业工商信息,可能还需要了解企业是否和其他公司、其他投资人有关系,而这些信息并不容易获取。
企业信息查询平台的出现,解决了这个痛点,用户可以在上面查询企业的工商信息、股东法人信息、诉讼失信信息等等,直观地了解投资人和公司、公司和公司之间的关系等,节省了搜集、筛选信息的时间和精力。
企业篇
当下,大数据对企业的商业决策和行为越来越重要,依靠传统的市场调研或购买调查报告等方式,得到的往往是滞后的数据信息,而企业自身又缺乏信息挖掘的技术和资源,难以获取到实时、精准的商业数据信息。
譬如销售,通常是企业收入来源的重要部门,对于新客营销来说,对目标客户群体的认知不够充分、销售线索和品牌客户太少等问题,会让企业在开拓新客户上寸步难行;而在客户维护上,企业CRM通常缺少优化的工具,难以从中筛选出有效的营销线索。这导致传统的企业销售人员只能依靠人工经验,在对方需求不明的情况下逐一联系客户进行销售,客户意向率自然不高。
像这类问题属于销售预测领域,这是目前企业数据的一个重要应用,尤其是对于To B企业,对销售线索的需求量非常大,而企业自身难以提供大量资源去寻找潜在企业客户的线索。
针对To
B企业领域的销售预测,探迹给出了更智能的解决方案:运用人工智能和大数据技术,挖掘全网在线企业信息,建立企业知识图谱,帮企业从知识图谱中匹配优质潜在客户。此外,探迹还会对潜在客户评分,通过丰富线索难度,计算与模型的契合度,帮助客户把现有的销售线索进行打分和排序,从而聚焦更高价值的潜在客户。
对To B企业而言,通过探迹智能预测平台,能够方便快捷地获取精准的潜在客户线索,而无需做客户调研、信息搜集等繁琐的前端销售工作,销售人员能节省大量的时间精力放在精准客户上。
企业数据做为大数据的一部分,在商业市场中越来越受到重视,而大数据公司要如何将数据变成宝藏,则需要深入到具体的应用场景去提供解决方案,增加用户和数据的黏性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27