京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的应用领域你知道多少
随着大数据的飞速发展,特别是近年来社交网络、物联网和云计算的飞速发展和大量应用,人们所接触和关注的数据量出现爆炸式增长,使得数据的丰富和复杂成为当今社会的重要特征。对大数据分析和处理的技术也随之建立完善并丰富起来。
一、商业智能
过去几十年,分析师们都依赖来自Hyperion、Microstrategy和Cognos的BI产品析海量数据并生成报告。数据仓库和BI工具能够很好地回答类似这样的问题:“某某人本季度的销售业绩是多少?”(基于结构化数据),但如果涉及到决策和规划方面的问题,由于不能快速处理非结构化数据,传统的BI会非常吃力和昂贵。
大多数传统BI工具都受到以下两个方面的局限:
首先,它们都是“预设抓取”工具,由分析师预先确定收集什么数据用于分析。其次它们都专注于报告“已知的未知”(Known unknowns),也就是我们知道问题是什么,然后去找答案。(而大数据会给出一些未知的未知,也就是你没有想到的一些问题的结果)
传统BI工具主要用于企业运营,侧重于成本控制和计划执行报告。而大数据最主要的功能/应用是ETL(Extract、Transform、Load)。将近80%的Hadoop应用都与ETL有关,例如在导入Vertica这样的分析数据库之前对日志文件或传感器数据的处理。
今天计算和存储硬件变得非常便宜,配合大量的开源大数据工具,人们可以非常“奢侈”地先抓取大量数据再考虑分析命题。可以说,低廉的计算资源正在改变我们使用数据的方式。此外,处理性能的大幅提高(例如内存计算)使得实时互动分析更加容易实现,而“实时”和“预测”将BI带到了一个新的境界——未知的未知。这也是大数据分析与传统BI之间最大的区别。
今天的大数据技术还处于战国时期,未来几年,随着企业间的兼并和新产品的不断推出,BI厂商们将能推出完善的,让CEO感到满意的“大数据套件”,但这并不意味着企业IT经理 们的工作将受到威胁。因为正如云计算在理想和现实间达成妥协一样,大数据也会经历类似的发展过程。传统的BI工具将与大数据分析并存。
二、公共服务
数据另外一个重大的应用领域是社会和政府。如今,数据挖掘已经能够预测疾病暴发、理解交通模型并改善教育。
今天,城市正面临预算超支、基础设施难题以及从农村和郊区涌入的大量人口。这些都是非常紧迫的问题,而城市,也正是大数据计划的绝佳实验室。
以纽约这样的大都市为例,政府公共数据公开化、以及市民生活的高度数字化(购物、交通、医疗等)等都是大数据分析的理想对象。
客观的市政数据,是消除争端,维系公民社会的最佳纽带。当然,前提是让公民能够访问这些数据。苹果的Siri和谷歌的Google Now都具备成为个人化助理的潜力。当然,我们还需要更多的产品和技术让数据分析结果更容易被公众理解和接受(数据可视化)。此外,IBM的Watson以及Wolfram Alpha这样的人工智能技术还能实现与用户的互动。
今天,智能手机(以及Twitter等社交网络)的普及让人类社会首次实现了公民的联网。应用程序商店实时上已经打通了政府和公民之间的应用层面的通道。(例如奥运期间伦敦警察厅发布的iphone通缉程序)。伴随着各国政务的数字化进程,以及政务数据的透明化,公民将能准确了解政府的运作效率。这是不可逆转的历史潮流,同时也是大数据最具潜力的应用领域之一。
三、市场营销
大数据的第三大应用领域是市场营销。具体来说,是提升消费者与企业之间的关系。(卖更多、更快、更有效率)
今天,最大的数据系统是web分析、广告优化等。今天的数字化营销与传统营销最大的个性化和精准定位。如今,企业与客户之间的接触点也发生了翻天覆地的变化,从过去的电话和邮件地址网页、社交媒体账户、博客等等。在这些五花八门的渠道里跟踪客户,将他们的每一次点击、收藏、“顶”、分享、加好友、转发等行为纳入企业的销售漏斗中并转化成收入是一个巨大的挑战。也就是所谓的“360度客户视角”。
可以预见在未来世界,国家之间、区域之间甚至是公司之间的大数据人才的争夺战,将是愈演愈烈的。大数据的发展史一个全球化的趋势,大数据时代已经到来。不少已经在工作或者大学刚毕业的朋友都想投身到大数据行业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12