
大数据技术以及应用发展
在大数据技术和大数据应用如火如荼的发展过程中,我们更要冷静地思考问题的本质,探讨究竟什么是大数据的技术和大数据应用。技术是指基于科学原理发明的、用于管控或改造“被察对象”的手段和方法。大数据技术则指以大数据为“对象”而开展的有效、高效的数据处置方法的研究,而不仅仅是用基于数据的方法来解决问题。就其本质特性而言,大数据不会是一个可完全“解决”的问题,只能通过种种技术手段逐步“迫近”它,以缓解大数据给我们带来的困扰。大数据问题源于互联网及其延伸带来的无处不在的信息技术应用以及信息化成本的不停降低。解决大数据问题,而且有效、高效地应用基于数据的方法,其关键依然是需要依赖有效、高效的计算技术。
大数据给我们带来了一系列新的挑战。要应对这些挑战,需要多个领域的交叉合作,模型、方法和算法都极度主要。然而,无论模型和算法怎样先进,面临大数据,人力、人脑均无能为力,必须依赖计算技术和工具,才能满足数据的获取和筛选、组织和存储、处置和应用等各个环节的计算需要。在此过程中,可能需要转变传统的计算模式及其计算系统演进方式。
大数据给软件的编程模型及其编程语言带来了新的挑战。编程模型可分为 3 个条理:(1) 低级模型及语言,直接面向计算机硬件系统结构,通常由计算机专业人员使用,具有性能可控、可预测的优点,但编程难度较大,在软件系统开发中编程效率较低、错误率高;(2) 高级模型及语言,直接面向系统软件,通常通用性较好,但性能依赖于软件工程师的编程水平和编译器的能力,语言机制设计和实现难度大;(3) 终端模型及编程,希望面向终端用户,为了便于业务人员使用,即提高易用性,可能仅针对特定的应用领域进行优化设计,因此会造成应用面窄、性能不行预测等问题。对于大数据应用来说,最理想的是接纳终端编程模型,可以面向差别领域的大数据应用,为最终用户提供直接的数据应用编程能力。但这种模型很可能遇到较大的性能问题,需要底层软硬件在结构上的支持以及高效的编译实现。
随着大数据应用的日益广泛,差别类型的应用在规模、易用性、成本、能耗等方面需求迥异,系统伸缩性的解决方案也受多方面的条件制约,因此需要能够针对差别需求灵活选择技术途径,而非牢固通用模式。凭应用需求,通过改变数据的存储方式,将需要访问的数据集中存放,可以使访问性能提高数百倍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02