京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代:安全第一,还是效率第一
随着互联网的脚步,大数据悄然而至,随着互联网影响的逐渐深入,大数据也开始发散它的能量。大数据和云计算加在一起甚至被人誉为信息产业的第三次高峰,与智能化生产、无线网络革命共同被称为引领未来繁荣的三大技术变革。
但大数据却像一枚硬币,有其两面:一面它将催生新型科技公司、吸纳科技人才就业,并为企业发展转型提供新机遇;另一面它对个人、企业甚至国家带来个人隐私危机、重构信息安全、竞争力差距拉大、数据产权争端等诸多挑战。
技术“照亮”个性化
数据古已有之,但互联网的产生为数据带来了质的突变。有统计显示,过去两年累积的数据量已超过了以往所有历史的总和,该数据还在以每年40%的速度增长,即信息总量每两年就翻一番。
之所以称为大数据时代,不单是指数据之大,规模只是先决条件,更主要是指数据正在成为一种资产或者生产资料。任何行业、任何领域都会产生有价值的数据,而对这些数据的统计、分析、挖掘和人工智能则会创造意想不到的价值和财富。
这项技术已在很多领域“开花结果”:比如在农业领域,硅谷有个气候公司,他们根据各地降雨、气温、土壤状况和历年农作物产量相关度的情况来预测农场来年产量,进而向农户出售个性化保险(放心保)。在中国,阿里巴巴根据在淘宝网上中小企业的交易状况筛选出财务健康和讲究诚信的企业,对他们发放无需担保的贷款。
科学界和舆论界给予了大数据高度的评价。《华尔街日报》将大数据时代与智能化生产、无线网络革命被称为引领未来繁荣的三大技术变革。
如果我们站在一个更乐观的角度,大数据可能会与第一次工业革命、第二次工业革命相提并论,成为一次新的工业革命。电子科技大学互联网科学中心主任周涛对《中国产经新闻》记者表示,因为它已具备了每次工业革命中最重要的因素,它的新能源是计算,新材料是数据,同时它还有先进的工业技术,也就是更聪明的头脑,怎么在这些材料中分析出更大的价值。
与前两次工业革命规模化、自动化的特征相比,周涛认为,大数据有其鲜明的特征,那就是在规模化和自动化之下的个性化。“我们在历史上第一次有机会把不同类型、来自不同地方的数据围绕着一个东西形成了一个完整的描述。”
比如一个人,我们有他的短信和通话数据、有他微博的内容数据、有他医保和社保的数据、还有他的交通数据、签到数据、社交关系数据等等,得益于这些数据,我们不仅能对这个人形成深刻的认识,而且能打造出完全个性化的服务。
不仅可以针对用户进行个性化的服务,还可以针对商品、地点进行个性化的服务。周涛说,这个个性化不是孤立的个性化,而是和第一次、第二次工业革命相结合,在规模化和自动化之下的个性化。大数据让自动地、成规模地为成千上万的人提供完全量身定制的服务成为了可能。
比如我们有1亿多用户的数据,我们可以给每个用户打500多个标签,根据每个用户有没有车、有没有房、有没有小孩和健康需求、金融理财需求等来区分他的长期、短期和即时兴趣。金融、证券、媒体、教育等各行中的企业可以根据这些认识来决定自己的市场广告投放方向和销售营销策略。
21世纪被誉为个性化的时代,但这一切如果没有技术的支撑,个性化终究只是空谈,只有扫除了技术上的障碍,个性化才有可能真正变为现实。应运而生的大数据让个性化真正照进现实。
转型契机来临
大数据被誉为下一个创新、竞争、生产力提高的前沿阵地,发达国家纷纷将开发利用大数据作为抢夺下一轮竞争制高点的抓手。大数据就像是一座矿山,孕育着大量的财富和机遇,对大数据的开采将催生新型科技公司和吸纳科技人才就业,对数据的利用将成为企业发展转型的突破点。
目前,单一数据集容量超过几十TB甚至数PB已不罕见,其规模之大已难以用常规软件工具对其进行抓取、管理和处理,这就需要借助于专业的技术公司,以大数据技术为核心业务的公司应运而生。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23