京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习之Logistic回归与Python实现
logistic回归是一种广义的线性回归,通过构造回归函数,利用机器学习来实现分类或者预测。
一 Logistic回归概述
Logistic回归的主要思想是,根据现有的数据对分类边界建立回归公式,从而实现分类(一般两类)。“回归”的意思就是要找到最佳拟合参数,其中涉及的数学原理和步骤如下:
(1)需要一个合适的分类函数来实现分类【单位阶跃函数、Sigmoid函数】
(2)损失函数(Cost函数)来表示预测值(h(x))与实际值(y)的偏差(h−y),要使得回归最佳拟合,那么偏差要尽可能小(偏差求和或取均值)。
(3)记J(ω)表示回归系数为ω时的偏差,那么求最佳回归参数ω就转换成了求J(ω)的最小值。【梯度下降法】
所以,接下来就围绕这几个步骤进行展开。
1.1 分类函数
假设要实现二分类,那么可以找一个函数,根据不同的特征变量,输出0和1,并且只输出0和1,这种函数在某个点直接从0跳跃到1,如:

但是这种函数处理起来,稍微有点麻烦,我们选择另外一个连续可导的函数,也就是Sigmoid函数,函数的公式如下:
这个函数的特点是,当x=0.5时,h(x)=0.5,而x越大,h(x)越接近1,x越小,h(x)越接近0。函数图如下:
![]()
这个函数很像阶跃函数,当x>0.5,就可以将数据分入1类;当x<0.5,就可以将数据分入0类。
确定了分类函数,接下来,我们将Sigmoid函数的输入记为z,那么
向量x是特征变量,是输入数据,向量w是回归系数是特征
之后的事情就是如何确定最佳回归系数ω(w0,w1,w2,...,wn)
1.2 Cost函数
现有

对于任意确定的x和w,有:

这个函数可以写成:

取似然函数:

求对数似然函数:

因此,就构造得到了函数J(w)来表示预测值与实际值的偏差,于是Cost函数也可以写成:

所以,我们可以用J(w)来表示预测值与实际值的偏差,也就是Cost函数,接下里的任务,就是如何让偏差最小,也就是J(w)最大
Question:为什么J(w)可以表示预测值与实际值的大小,为什么J(w)最大表示偏差最小。
我们回到J(w)的推导来源,来自
P(y=1|x,w)=hw(x)和P(y=0|x,w)=1−hw(x),
那么显然有
当x>0,此时y=1,1/2<hw(x)<1,所以P(y=1|x,w)=hw(x)>1/2
当x<0,此时y=0,0<hw(x)<1/2,所以P(y=0|x,w)=1−hw(x)>1/2
所以,无论如何取值,P(y=0|x,w)都大于等于1/2,P(y=0|x,w)越大,越接近1,表示落入某分类概率越大,那么分类越准确,预测值与实际值差异就越小。
所以P(y=0|x,w)可以表示预测值与实际值的差异,且P(y=0|x,w)越大表示差异越小,所以其似然函数J(w)越大,预测越准确。
所以,接下来的任务,是如何求解J(w)最大时的w值,其方法是梯度上升法。
1.3 梯度上升法求J(w)最大值
梯度上升法的核心思想是:要找某个函数的最大值,就沿着这个函数梯度方向探寻,如果梯度记为∇,那么函数f(x,y)的梯度是:

梯度上升法中,梯度算子沿着函数增长最快的方向移动(移动方向),如果移动大小为α(步长),那么梯度上升法的迭代公式是:
问题转化成:

首先,我们对J(w)求偏导:

在第四至第五行的转换,用到的公式是:
将求得的偏导公式代入梯度上升法迭代公示:

可以看到,式子中所有函数和输入的值,都是已知的了。接下来,可以通过Python实现Logistic回归了。
二、Python算法实现
2.1 梯度上升法求最佳回归系数
首先,数据取自《机器学习实战》中的数据,部分数据如下:
-0.017612 14.053064 0
-1.395634 4.662541 1
-0.752157 6.538620 0
-1.322371 7.152853 0
0.423363 11.054677 0
0.406704 7.067335 1
先定义函数来获取数去,然后定义分类函数Sigmoid函数,最后利用梯度上升法求解回归系数w。
建立一个logRegres.py文件,输入如下代码:
from numpy import *
#构造函数来获取数据
def loadDataSet():
dataMat=[];labelMat=[]
fr=open('machinelearninginaction/Ch05/testSet.txt')
for line in fr.readlines():
lineArr=line.strip().split()
dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])#特征数据集,添加1是构造常数项x0
labelMat.append(int(lineArr[-1]))#分类数据集
return dataMat,labelMat
def sigmoid(inX):
return 1/(1+exp(-inX))
def gradAscent(dataMatIn,classLabels):
dataMatrix=mat(dataMatIn) #(m,n)
labelMat=mat(classLabels).transpose() #转置后(m,1)
m,n=shape(dataMatrix)
weights=ones((n,1)) #初始化回归系数,(n,1)
alpha=0.001 #定义步长
maxCycles=500 #定义最大循环次数
for i in range(maxCycles):
h=sigmoid(dataMatrix * weights) #sigmoid 函数
error=labelMat - h #即y-h,(m,1)
weights=weights + alpha * dataMatrix.transpose() * error #梯度上升法
return weights
在python命令符中输入代码对函数进行测试:
In [8]: import logRegres
...:
In [9]: dataArr,labelMat=logRegres.loadDataSet()
...:
In [10]: logRegres.gradAscent(dataArr,labelMat)
...:
Out[10]:
matrix([[ 4.12414349],
[ 0.48007329],
[-0.6168482 ]])
于是得到了回归系数。接下来根据回归系数画出决策边界wTx=0
定义作图函数:
def plotBestFit(weights):
import matplotlib.pyplot as plt
dataMat,labelMat=loadDataSet()
n=shape(dataMat)[0]
xcord1=[];ycord1=[]
xcord2=[];ycord2=[]
for i in range(n):
if labelMat[i]==1:
xcord1.append(dataMat[i][1])
ycord1.append(dataMat[i][2])
else:
xcord2.append(dataMat[i][1])
ycord2.append(dataMat[i][2])
fig=plt.figure()
ax=fig.add_subplot(111)
ax.scatter(xcord1,ycord1,s=30,c='red',marker='s')
ax.scatter(xcord2,ycord2,s=30,c='green')
x=arange(-3,3,0.1)
y=(-weights[0,0]-weights[1,0]*x)/weights[2,0] #matix
ax.plot(x,y)
plt.xlabel('X1')
plt.ylabel('X2')
plt.show()
在Python的shell中对函数进行测试:
In [11]: weights=logRegres.gradAscent(dataArr,labelMat)
In [12]: logRegres.plotBestFit(weights)
...:
2.2 算法改进
(1) 随机梯度上升
上述算法,要进行maxCycles次循环,每次循环中矩阵会有m*n次乘法计算,所以时间复杂度(开销)是maxCycles*m*n,当数据量较大时,时间复杂度就会很大。因此,可以是用随机梯度上升法来进行算法改进。
随机梯度上升法的思想是,每次只使用一个数据样本点来更新回归系数。这样就大大减小计算开销。
代码如下:
def stocGradAscent(dataMatrix,classLabels):
m,n=shape(dataMatrix)
alpha=0.01
weights=ones(n)
for i in range(m):
h=sigmoid(sum(dataMatrix[i] * weights))#数值计算
error = classLabels[i]-h
weights=weights + alpha * error * dataMatrix[i] #array 和list矩阵乘法不一样
return weights
注意:gradAscent函数和这个stocGradAscent函数中的h和weights的计算形式不一样,因为
前者是的矩阵的计算,类型是numpy的matrix,按照矩阵的运算规则进行计算。
后者是数值计算,其类型是list,按照数值运算规则计算。
对随机梯度上升算法进行测试:
In [37]: dataMat,labelMat=logRegres.loadDataSet()
...:
In [38]: weights=logRegres.stocGradAscent(array(dataMat),labelMat)
...:
In [39]: logRegres.plotBestFit(mat(weights).transpose())
...:
输出的样本数据点和决策边界是:
(2)改进的随机梯度上升法
def stocGradAscent1(dataMatrix,classLabels,numIter=150):
m,n=shape(dataMatrix)
weights=ones(n)
for j in range(numIter):
dataIndex=list(range(m))
for i in range(m):
alpha=4/(1+i+j)+0.01#保证多次迭代后新数据仍然具有一定影响力
randIndex=int(random.uniform(0,len(dataIndex)))#减少周期波动
h=sigmoid(sum(dataMatrix[randIndex] * weights))
error=classLabels[randIndex]-h
weights=weights + alpha*dataMatrix[randIndex]*error
del(dataIndex[randIndex])
return weights
在Python命令符中测试函数并画出分类边界:
In [188]: weights=logRegres.stocGradAscent1(array(dataMat),labelMat)
...:
In [189]: logRegres.plotBestFit(mat(weights).transpose())
...:
(3)三种方式回归系数波动情况
普通的梯度上升法:

随机梯度上升:

改进的随机梯度上升
评价算法优劣势看它是或否收敛,是否达到稳定值,收敛越快,算法越优。
三 实例
3.1 通过logistic回归和氙气病症预测马的死亡率
数据取自《机器学习实战》一书中的氙气病症与马死亡的数据,部分数据如下:
2.000000 1.000000 38.500000 66.000000 28.000000 3.000000 3.000000 0.000000 2.000000 5.000000 4.000000 4.000000 0.000000 0.000000 0.000000 3.000000 5.000000 45.000000 8.400000 0.000000 0.000000 0.000000
1.000000 1.000000 39.200000 88.000000 20.000000 0.000000 0.000000 4.000000 1.000000 3.000000 4.000000 2.000000 0.000000 0.000000 0.000000 4.000000 2.000000 50.000000 85.000000 2.000000 2.000000 0.000000
2.000000 1.000000 38.300000 40.000000 24.000000 1.000000 1.000000 3.000000 1.000000 3.000000 3.000000 1.000000 0.000000 0.000000 0.000000 1.000000 1.000000 33.000000 6.700000 0.000000 0.000000 1.000000
#定义分类函数,prob>0.5,则分入1,否则分类0
def classifyVector(inX,trainWeights):
prob=sigmoid(sum(inX*trainWeights))
if prob>0.5:return 1
else : return 0
def colicTest():
frTrain = open('machinelearninginaction/Ch05/horseColicTraining.txt')#训练数据
frTest = open('machinelearninginaction/Ch05/horseColicTest.txt')#测试数据
trainSet=[];trainLabels=[]
for line in frTrain.readlines():
currLine=line.strip().split('\t')
lineArr=[]
for i in range(21):
lineArr.append(float(currLine[i]))
trainSet.append(lineArr)
trainLabels.append(float(currLine[21]))
trainWeights=stocGradAscent1(array(trainSet),trainLabels,500)#改进的随机梯度上升法
errorCount=0;numTestVec=0
for line in frTest.readlines():
numTestVec+=1
currLine=line.strip().split('\t')
lineArr=[]
for i in range(21):
lineArr.append(float(currLine[i]))
if classifyVector(array(lineArr),trainWeights)!=int(currLine[21]):
errorCount+=1
errorRate=(float(errorCount)/numTestVec)
print('the error rate of this test is :%f'%errorRate)
return errorRate
def multiTest():#进行多次测试
numTests=10;errorSum=0
for k in range(numTests):
errorSum+=colicTest()
print('after %d iterations the average error rate is:%f'%(numTests,errorSum/float(numTests)))
在控制台命令符中输入命令来对函数进行测试:
In [3]: logRegres.multiTest()
G:\Workspaces\MachineLearning\logRegres.py:19: RuntimeWarning: overflow encountered in exp
return 1/(1+exp(-inX))
the error rate of this test is :0.313433
the error rate of this test is :0.268657
the error rate of this test is :0.358209
the error rate of this test is :0.447761
the error rate of this test is :0.298507
the error rate of this test is :0.373134
the error rate of this test is :0.358209
the error rate of this test is :0.417910
the error rate of this test is :0.432836
the error rate of this test is :0.417910
after 10 iterations the average error rate is:0.368657
分类的错误率是36.9%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27