京公网安备 11010802034615号
经营许可证编号:京B2-20210330
图形和数值的数据集描述方法
图形方法对数据集的描述
1. 条形图(bar graph)

条形图一般横向表示类别(class),纵向表示该类别所对应的类别频率(class frequency)。
2. 饼状图(pie graph)

饼状图是一个圆周,每个类别对应的扇形面积大小和类别相对频率(class relative frequency)成比例。
3. 帕累托直方图(pareto diagram)

帕累托直方图是讲直方图按照从高到低的顺序排列之后所形成的直方图。
以上三种图形表示方法是定性数据描述中常用的方法,在定量数据集描述中,还有以下的图表描述方法。
根据上表数据可以得到下图:
4.点图(dot plot)

每个观察值放在横轴上,当有重复的观察值时,则放在这个点上面,于是堆积成了此图。
5. 茎叶图(stem-and-leaf display)

将观测值百分比分为两部分,小数点左边的数字作为“茎”,小数点右边的数字作为“叶”。
6. 直方图
直方图是对横轴数值进行区间划分。
4-6是常用的定量数据集的图形描述方法,这三种方法各有所长,最大的优点可以看出数据主要集中在那个范围之内。
7. 箱线图(box plot)

箱线图一般用于异常值的检测,是基于四分位差(interquartile range,IQR)建立的。四分位差是指上四分位数(Qu)和下四分位数(Qi)之间的距离,即
箱线图中:
在内栏和外栏之间的观测值被认为是可疑异常值,在外栏之外的观测值则是高度可疑的异常值。
8. 散点图(scatterplot)

散点图用来描述两个定量变量之间的关系,称之为二元关系(bivariate relationship),当一个变量随另一个变量增长而增长时,这个二元关系是正相关的,反之,一个变量随另一个变量增长而呈减少趋势时,这个二元关系是负相关的。
9. 时间序列图(time series plot)

时间序列图用来描述度量值随着时间的推移而变化的数据变化情况。
均值(mean)
均值,也就是我们常说的平均数,小学生也知道,所有值得和除以这个数据集中 值的个数。
中位数(median)
简单的讲,就是将数据集中所有数据按照升序或者降序排序之后,处在中间的数值。(如果数值个数是偶数,那么是中间两个数的平均数)
众数(mode)
数据集中出现频率最高的数。
极差(range)
最大值与最小值的差值。
方差(variance)
样本方差:测量值与均值的偏差平方和除以(n-1),除以n-1是因为样本方差是总体方差的无偏估计量。
标准差(standard deviation)
相对位置的测度(measures of relative standing)
百分位排名(percentile ranking):对于有n个测量值的数据集(升序或者降序排列),第p个百分位点,有p%个测量值在它下面,而又(1-p%)个测量值在它上面。
z得分
z得分是利用均值和标准差来衡量测试值的相对位置,用测试值x减去均值,再除以标准差。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27