京公网安备 11010802034615号
经营许可证编号:京B2-20210330
互联网影视大数据时代或将来临
目前,互联网影视行业正处于虚假繁荣的泡沫状况,如果没有强有力的监管手段和行业新标准,整个行业很可能会出现‘信用危机现象’,这不利于行业的良性循环。
互联网重构了影视生态,与传统影视时代不同,互联网影视时代,行业在内容模式、传播方式、运营手法上已经大为不同,新业态的发展,意味着互联网影视行业需要新的标准。
共赢促行业良性发展
“传统的甲方与乙方模式已经不能适应互联网影视行业,现在是需要让产业链上的编剧、投资人、广告商、终端用户等,都能得到最大的收益。”王欢表示,可以通过大数据的挖掘分析,为互联网影视行业提供全方位的科学决策。
业界预测,2017年至2018年中国大数据市场规模将维持40%左右的高速增长。在王欢看来,成功的大数据公司应该具备以下几点:一是有渠道、手段和技术能力得到优质数据资源;二是能够为用户找到解决价值盲点的数据,通过建模和分析形成效益变现;三是能够处理好去隐私化和大数据安全的关系;四是要有合作共赢的商业模式。
小鲜肉多了,脍炙人口的作品少了,很多影视剧没有用户黏性,影视行业存在着虚浮的泡沫,急需成熟的工业化运营体系。以美国好莱坞为例,美国的影视产业有一套自己的企业评级标准,通过经营规模、经验以及规范程度为企业评级,将企业划分为不同的等级,以便于影视产业链各环节都能有参照的标准。在我国,影视企业并没有完善的规范和体系。
王欢告诉记者,“蓝水科技希望通过大数据创建新的评价体系,通过打造合作共赢的商业模式,为影视全产业链的提升来扩大利润空间。”
在王欢看来,建立权威、有效的行业标准,不仅需要庞大、多样性的数据,更需要全新的维度和分析方法,才能为互联网影视行业得出最清晰的结论,正向引导行业发展。
“蓝水科技搭建的大数据平台要为影视产业链的各方进行服务,整合整个行业的资源。全程跟踪影视项目从创意、投资、制作到宣发的全过程,将产业链的各方连接起来。”王欢表示。
不过,王欢强调,互联网影视行业是以内容为主导,只有产生价值才能使行业良性循环。同时,也面临两大难点:一是在标准建立和验证过程中,数据比较杂,需要经过大量论证,确定建模需要数百次,因此,不仅算法要精准,还需要深入了解互联网行业,才能知道数据对各方是不是有价值;二是在对大数据的处理上,面临着数据安全如何保障的问题,以及随着通信技术的发展,互联网影视产业的数据越来越大,技术该如何处理。
王欢表示,互联网影视产业是一片蓝海,目前亟须构建成熟的信用体系,才能有利于实现各方的共赢。
搜视率为互联网影视标准“拓荒”
近几年,中国的互联网影视产业步入了发展的快车道,但互联网影视剧动辄几十亿、上百亿的网络点击量的背后存在着数据造假问题。在互联网影视时代,亟须建立一个更加客观的评价指标。
“以往对互联网影视作品的评价是基于点击量这一标准,然而点击量很难在评价作品中完全代表用户的习惯,也无法准确判断用户的数量,而且数据容易被操纵,还会存在巨大的偏差。正是基于此,提出了以用户量为基础的搜视率指标体系,通过对短时间内主动搜索观看影视人数占总用户的比重,反映作品价值的输出情况,成为节目制作、编排、调整的重要参考和媒介计划评估、项目评估的重要指标。”王欢告诉记者。
据介绍,搜视率打破了现阶段互联网影视作品单纯依靠点击量和用户赞、踩、评论等单一维度进行评价的局面,通过互联网数据结合运营商、视频平台、社交平台、直播平台等多数据维度,结合系统抽样规则,科学算法体系交叉出各类率项指标,多维度对作品的互联网表现、周期走势、受众推及等焦点问题进行有效的数据分析,对作品给出综合评价。
王欢强调,搜视率指标体系的优点是能够精确到个体,对用户的观影行为进行可持续性的监测,同时打造精准的用户画像。作为电视台收视率的有效补充,能够为从业者和行业主管单位,提供最为科学的决策参考依据。
因此,“搜视率”在互联网影视时代更具价值。
王欢认为,随着搜视率的广泛应用,内容生产商能够根据数据调整内容策略和市场定位;投资者能够更清晰地了解行业,洞察不同影视方向的增长点;广告主们根据数据反映的情况,制定更有效的传播策略,提升品牌与销量;视频平台能更精准策划栏目,满足用户需求;而用户的体验持续提升,付费意识增强,最终使得行业的标准更牢固、生态链更加健康有序。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12