京公网安备 11010802034615号
经营许可证编号:京B2-20210330
因子模型: X=μ + A*F* + ε
其中F=[(f1,f2,…,fm)]^T为公共因子向量,[ε=(ε1,ε2,…,εp)]^T为特殊因子向量,A=[(aij)]^(p×m)为因子载荷矩阵。
I.参数估计
为了建立因子模型,需要要得到因子载荷矩阵A=[(aij)]^(p×m)和特殊方差矩阵D=diag(σ1^2,σ2^2,…,σp^2)这两个参数的估计。
常用的参数估计方法有如下三种:主成分法、主因子法和极大似然法。
接下来会分别介绍以上三种方法具体方法,和综合三种方法的一个简便写法。
例. 12项智力指标的因子分析
研究者收集了40名学生的12项智力指标,分别为常识(x1)、类同(x2)、计算(x3)、词汇(x4)、理解(x5)、数字广度(x6)、常填图(x7)、图片排列(x8)、积木(x9)、拼图(x10)、译码(x11)和迷津(x12)。将原始数据经过标准化处理后,计算其相关系数矩阵,结果列在下表中。取m=2,试进行因子分析
#输入相关矩阵的数值
x <- c(
1.000,
0.6904 ,1.000,
0.4115 ,0.4511, 1.000,
0.4580, 0.7068, 0.4018, 1.000,
0.5535, 0.6620, 0.4122, 0.7119, 1.000,
0.3923, 0.6317, 0.4520, 0.4583, 0.5299, 1.000,
0.1415, 0.3009, 0.2025, 0.2665, 0.2480, 0.1590, 1.000,
0.0077, 0.0344, 0.1855, 0.1065, 0.0003, 0.1100, 0.3595, 1.000,
0.2385, 0.3523, 0.3646, 0.3644, 0.3388, 0.3982, 0.5004, 0.3314, 1.000,
0.0333, 0.1726, 0.1311, 0.1757, 0.1998, 0.0342, 0.5758, 0.1420, 0.2808, 1.000,
0.0898, 0.3878, 0.2041, 0.3191, 0.3186, 0.2914, 0.2537, 0.2025, 0.3971, 0.1468, 1.000,
0.2215, 0.2427, 0.4124, 0.2169, 0.1459, 0.0985, 0.4222, 0.2156, 0.5016, 0.2286, 0.0776, 1.000)
names<-c("X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "X11", "X12")
R<-matrix(0, nrow=12, ncol=12, dimnames=list(names, names))
#生成相关系数矩阵R
for (i in 1:12){
for (j in 1:i){
R[i,j]<-x[(i-1)*i/2+j]; R[j,i]<-R[i,j]
}
}
1.主成分法
(需要设置的参数是R,因子个数m,后面会讲到m如何选取)
下面给出主成分法的R程序(factor.analy1.R)
factor.analy1<-function(S, m){
p<-nrow(S); diag_S<-diag(S); sum_rank<-sum(diag_S)
rowname<-paste("X", 1:p, sep="")
colname<-paste("Factor", 1:m, sep="")
A<-matrix(0, nrow=p, ncol=m,
dimnames=list(rowname, colname))
eig<-eigen(S)
for (i in 1:m)
A[,i]<-sqrt(eig$values[i])*eig$vectors[,i]
h<-diag(A%*%t(A))
rowname<-c("SS loadings", "Proportion Var", "Cumulative Var")
B<-matrix(0, nrow=3, ncol=m,
dimnames=list(rowname, colname))
for (i in 1:m){
B[1,i]<-sum(A[,i]^2)
B[2,i]<-B[1,i]/sum_rank
B[3,i]<-sum(B[1,1:i])/sum_rank
}
method<-c("Principal Component Method")
list(method=method, loadings=A,
var=cbind(common=h, spcific=diag_S-h), B=B)
}
函数输入值S是样本方差阵或相关矩阵,m是主因子的个数,函数的输出值是列表形式,其内容有估计参数的办法(主成分法),因子载荷(loadings),共性方差和特殊方差,以及因子F对变量X的贡献、贡献率和累积贡献率。
#调用因子分析主成分法的函数
source("factor.analy1.R")
#显示结果.估计参数的方法为主成分法,loadings-因子载荷,var-共性方差和特殊方差,以及B-因子F对变量X的贡献、贡献率和累积贡献率
fa1<-factor.analy1(R, m=2); fa1
#协方差阵S的近似公式,误差平方和Q(m) (近似公式为E=S-A*A^T-D)
E1 <- R-fa1$loadings %*% t(fa1$loadings)-diag(fa1$var[,2])
sum(E1^2)
因子个数m的选取
#求特征值,对其求和
eigen(cor(R))
sum(eigen(cor(R))$values)
#选取满足 m个λ累加/所有λ累加 >= P0 的最小m,P0一般取[0.7,1)
(5.561644e+00 + 1.676901e+00 + 1.434965e+00) / sum(eigen(cor(R))$values)
#可以取m=3
#下面检验是否此时Q(m)最小
fa11 <- factor.analy1(R, m=3); fa11
#协方差阵S的近似公式,误差平方和Q(m) (近似公式为E=S-A*A^T-D)
E11 <- R-fa11$loadings %*% t(fa11$loadings)-diag(fa11$var[,2])
sum(E11^2)
结果看到,sum(E1^2)=1.060286 > sum(E11^2)=0.9550174。说明公因子个数m选择适当时,近似公式S的误差平方和Q(m)更优
2.主因子法
(需要设置的参数是R,因子个数m,特殊方差的估计值d,m值选取参考主成分法,d选取方法后面会讲到)
按照主因子法的思想编写相应的R程序:(factor.analy2.R)
factor.analy2<-function(R, m, d){
p<-nrow(R); diag_R<-diag(R); sum_rank<-sum(diag_R)
rowname<-paste("X", 1:p, sep="")
colname<-paste("Factor", 1:m, sep="")
A<-matrix(0, nrow=p, ncol=m,
dimnames=list(rowname, colname))
kmax=20; k<-1; h <- diag_R-d
repeat{
diag(R)<- h; h1<-h; eig<-eigen(R)
for (i in 1:m)
A[,i]<-sqrt(eig$values[i])*eig$vectors[,i]
h<-diag(A %*% t(A))
if ((sqrt(sum((h-h1)^2))<1e-4)|k==kmax) break
k<-k+1
}
rowname<-c("SS loadings", "Proportion Var", "Cumulative Var")
B<-matrix(0, nrow=3, ncol=m,
dimnames=list(rowname, colname))
for (i in 1:m){
B[1,i]<-sum(A[,i]^2)
B[2,i]<-B[1,i]/sum_rank
B[3,i]<-sum(B[1,1:i])/sum_rank
}
method<-c("Principal Factor Method")
list(method=method, loadings=A,
var=cbind(common=h, spcific=diag_R-h), B=B, iterative=k)
}
函数输入值R是样本方差阵或相关矩阵,m是主因子的个数,d是特殊方差的估计值,函数的输出值是列表形式,其内容有估计参数的办法(主因子法),因子载荷(loadings),共性方差和特殊方差,以及因子F对变量X的贡献、贡献率和累积贡献率,以及求解的迭代次数。
相同数据,相关系数矩阵R,取公因子个m=2,特殊方差的估计值为0
#输入特殊方差var$spcific估计值,可以全部取0,下面会介绍怎么取合适的特殊方差估计值
d<-c(0,0,0,0,0,0,0,0,0,0,0,0)
#调用调用因子分析主因子法的函数
source("factor.analy2.R")
#显示结果.估计参数的方法为主成分法,loadings-因子载荷,var-共性方差和特殊方差,以及B-因子F对变量X的贡献、贡献率和累积贡献率,iterative-迭代次数
fa2<-factor.analy2(R, m=3, d); fa2
#近似公式S的误差平方和Q(m)
E2<- R-fa2$loadings %*% t(fa2$loadings)-diag(fa2$var[,2])
sum(E2^2)
用了13次迭代得到稳定解,再计算Q(m)
sum(E2^2)=0.3141111,优于主成分法
特殊方差估计值σi^2的常用选取方法
## 1.σi^2 = 1/rii,其中rii为R的逆矩阵的第i个对角线元素,此时Q(m)=sum(E21^2)
#R的逆矩阵R^-1
solve(R)
#取其对角线值,再求倒数
1 / diag(solve(R))
#将刚才的结果作为特殊方差估计值,我们来验证是否Q(m)会更优
d1 <- c(0.4113202,0.2159605,0.5974511,0.3610979,0.3659987,0.4522035,0.4673815,0.7639169,0.4743578,0.6385381,0.6627739,0.5743706)
#调用调用因子分析主因子法的函数
source("factor.analy2.R")
#显示结果.估计参数的方法为主成分法,loadings-因子载荷,var-共性方差和特殊方差,以及B-因子F对变量X的贡献、贡献率和累积贡献率,iterative-迭代次数
fa21 <- factor.analy2(R, m=3, d1); fa21
#近似公式S的误差平方和Q(m)
E21 <- R-fa21$loadings %*% t(fa21$loadings)-diag(fa21$var[,2])
sum(E21^2)
## 2.σi^2 = 1-hi^2,其中hi^2=max(j/i) |rij|
## 3.σi^2 = 1-hi^2,其中hi^2=1,此时σi^2全取0,此时Q(m)=sum(E2^2)
#### 这里R为相关矩阵,对角线元素全为1,其余元素都为0-1间的小数,所以方法2.和3.在这里是一样的
sum(E21^2) = 0.3106186 < sum(E2^2)=0.3141111,证明特殊方差估计值的选取方法,1.要优于2.、3.
3.极大似然法
(需要设置的参数是R,因子个数m,特殊方差的估计值d,m值选取参考主成分法,d值选取参考主因子法)
按照极大似然法的思想编写相应的R程序:(factor.analy3.R)
factor.analy3<-function(S, m, d){
p<-nrow(S); diag_S<-diag(S); sum_rank<-sum(diag_S)
rowname<-paste("X", 1:p, sep="")
colname<-paste("Factor", 1:m, sep="")
A<-matrix(0, nrow=p, ncol=m,
dimnames=list(rowname, colname))
kmax=20; k<-1
repeat{
d1<-d; d2<-1/sqrt(d); eig<-eigen(S * (d2 %o% d2))
for (i in 1:m)
A[,i]<-sqrt(eig$values[i]-1)*eig$vectors[,i]
A<-diag(sqrt(d)) %*% A
d<-diag(S-A%*%t(A))
if ((sqrt(sum((d-d1)^2))<1e-4)|k==kmax) break
k<-k+1
}
rowname<-c("SS loadings","Proportion Var","Cumulative Var")
B<-matrix(0, nrow=3, ncol=m,
dimnames=list(rowname, colname))
for (i in 1:m){
B[1,i]<-sum(A[,i]^2)
B[2,i]<-B[1,i]/sum_rank
B[3,i]<-sum(B[1,1:i])/sum_rank
}
method<-c("Maximum Likelihood Method")
list(method=method, loadings=A,
var=cbind(common=diag_S-d, spcific=d),B=B,iterative=k)
}
函数输入值R是样本方差阵或相关矩阵,m是主因子的个数,d是特殊方差的估计值,函数的输出值是列表形式,其内容有估计参数的办法(主因子法),因子载荷(loadings),共性方差和特殊方差,以及因子F对变量X的贡献、贡献率和累积贡献率,以及求解的迭代次数。
相同数据,相关系数矩阵R,取公因子个m=2,特殊方差的估计值为:
#输入特殊方差var$spcific估计值(用上例中方法1.的结果d1)
d1 <- c(0.4113202,0.2159605,0.5974511,0.3610979,0.3659987,0.4522035,0.4673815,0.7639169,0.4743578,0.6385381,0.6627739,0.5743706)
#调用调用因子分析极大似然法的函数
source("factor.analy3.R")
#显示结果.估计参数的方法为主成分法,loadings-因子载荷,var-共性方差和特殊方差,以及B-因子F对变量X的贡献、贡献率和累积贡献率,iterative-迭代次数
fa3 <- factor.analy3(R, m=3, d1); fa3
#近似公式S的误差平方和Q(m)
E3 <- R-fa3$loadings %*% t(fa3$loadings)-diag(fa3$var[,2])
sum(E3^2)
sum(E3^2) = 0.3412492
4.综合以上三种方法
(method=“xxx”)
将上述3种方法结合在一起,并考虑主成分估计中介绍的因子个数m的选取方法,和在主因子法中介绍的特殊方差初始估计方法,编写相应的R程序
factor.analy.R
用一条函数,通过改变参数method=“xxx” , 可以更方便对比三种方法的结果
factor.analy<-function(S, m=0,
d=1/diag(solve(S)), method="likelihood"){
if (m==0){
p<-nrow(S); eig<-eigen(S)
sum_eig<-sum(diag(S))
for (i in 1:p){
if (sum(eig$values[1:i])/sum_eig>0.70){
m<-i; break
}
}
}
source("factor.analy1.R")
source("factor.analy2.R")
source("factor.analy3.R")
switch(method,
princomp=factor.analy1(S, m), #method=“princomp”时输入S,m=i两个参数
factor=factor.analy2(S, m, d), #method=“factor”时输入S,m=i,d=c(x,..,x)三个参数
likelihood=factor.analy3(S, m, d) #method=“likehood”时输入S,m=i,d=c(x,..,x)三个参数
)
}
函数输入样本方差矩阵S或样本相关矩阵R。因子个数m(缺省值由贡献率计算出m值)。特殊方差的初始估计d(缺省值为^σi方 = 1/rii)
计算因子载荷的方法,method=princomp采用主成分法,method=factor采用主因子法,method=likelihood(缺省值)采用极大似然法
函数输出就是采用前面介绍的三种方法的输出格式。
#使用factor.analy.R的实例:
source("factor.analy.R")
fa4 <- factor.analy(S=R,m=3,method = "princomp") ; fa4
#近似公式S的误差平方和Q(m)
E4 <- R-fa4$loadings %*% t(fa4$loadings)-diag(fa4$var[,2])
sum(E4^2) #可以看到,这里E4算出的Q(m)与E11算出的Q(m)是相同的
II.方差最大的正交旋转
某医院为了合理评价该院各月的医疗工作质量,搜集了3年有关门诊人次、出院人数、病床利用率、病床周转次数、平均住院天数、治愈好转率、病死率、诊断符合率、抢救成功率等9个指标数据,试采用因子分析法,探讨其综合评价指标体系。
使方差最大的因子载荷矩阵
先用三种方法之一计算的因子载荷估计矩阵,再用varimax()函数得到方差最大的因子载荷矩阵
#导入原始数据
hospital <- read.csv("hospital.csv",header=T)
#生成hospital表格的相关系数矩阵R
R <- cor(hospital)
for (i in 1:9){
for (j in 1:i){
R[i,j]<-x[(i-1)*i/2+j]; R[j,i]<-R[i,j]
}
}
#调用因子分析的特殊方差初始估计方法
source("factor.analy.R")
#以princomp方法为例
fa<-factor.analy(R, m=2, method="princomp")
vm1<-varimax(fa$loadings, normalize = F); vm1
因子分析的计算函数
事实上,在R软件中,提供了作因子分析计算的函数–factanal()函数,它可以从样本数据、样本的方差矩阵和相关矩阵出发对数据作因子分析,并可直接给出方差最大的载荷因子矩阵。
#显示factanal()函数的帮助页面,参数设置问题
?factanal()
#取公因子个数m=2,选用II中例子里的相关系数矩阵R,利用factanal函数得到fa结果
fa <- factanal(factors = 4,covmat = R)
#或者不用相关系数矩阵R,直接用csv格式文件:fa <- factanal(X=~.,factors=2,data=hospital)
#显示结果
fa
在上述信息中,call表示调用函数的方法,uniquenesses是特殊方差,loadings是因子载荷矩阵,其中Factor1,Factor2是因子,X1,X2,…,X9是对应的变量,SS loadings是公共因子对变量X的总方差贡献,Proportion Var是方差贡献率,Cumulative Var是累积方差贡献率。
IV.因子得分
回归法和加权最小二乘法
##导入原始数据
hospital <- read.csv("hospital.csv",header=T)
#相关矩阵特征值
eigen(cor(R))$values
sum(eigen(cor(R))$values[1:3])/sum(eigen(cor(R))$values)
#前3个因子的累积贡献率达到0.8134434,接下来选取因子个数为3
#不同方法计算因子得分
fa_1<-factanal(~., factors=3, data=hospital, scores="Bartlett") #加权最小二乘法
fa_2<-factanal(~., factors=3, data=hospital, scores="regression") #回归法
fa_1;fa_2
#画出各组在第a、第b公共因子下的散点图
plot(fa$scores[, 1:2], type="n"); text(fa$scores[,1], fa$scores[,2]) #第一、第二公共因子下的散点图
plot(fa$scores[, c(1,3)], type="n"); text(fa$scores[,1], fa$scores[,3]) #第一、第三公共因子下的散点图
上面是采用回归法,也可以使用加权最小二乘法来画图。由散点图,可以直观选出偏向哪个公共因子的组别。
根据选项factors=4的设定,3个潜在因子被保留,前3个因子的累积贡献率达到81.3%,上式为全部变量在3个潜在因子F1-F3上的因子载荷矩阵
例如:x1由4个因子表达的式子为:
x1=0.447*F1 + 0.519*F2 + -0.101*F4
从矩阵上看,因子1在多数原始指标上均有较大的载荷,因子2在x1(门诊人次)、x2(出院人数)、x3(病床利用率)、x4(病床周转次数)上有较大的载荷,因子3在x2(出院人数)、x5(平均住院天数)、x6(治愈好转率)上有较大的载荷。除因子1可以认定为综合因子外,其他3个因子意义不明显。
因子旋转
fa_1<-factanal(~., factors=3, data=hospital, scores="Bartlett") #加权最小二乘法
vm <- varimax(fa_1$loadings,normalize = F) ; vm
经过因子旋转处理,3个潜在因子在9个原始指标上的因子载荷矩阵如上表所示。
对该因子载荷进行分析,可看出:因子F1在x1(门诊人次)、x2(出院人数)、x5(平均住院天数)、x8(诊断符合率)、x9(抢救成功率)上因子载荷较大;F2在x3(病床利用率)、x4(病床周转次数)上的因子载荷较大;F3在x6(治愈好转率)、x7(病死率)上的因子载荷较大
我们可以推出:因子F1反映了该医院医疗工作质量各方面的情况,为综合因子;F2反映了病床利用情况;F3反映了医疗水平的高低
将旋转后的因子载荷与主成分分析的因子载荷矩阵比较可知:因子旋转后,除F1的因子载荷仍分布多数指标上外,其他2个因子的载荷明显地集中到少数指标上,说明旋转对因子载荷起到明显的分离作用,使得各因子解释的变量更加清晰。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12