
Python变量类型
变量是保存存储值的内存位置。也就是说,当创建一个变量时,可以在内存中保留一些空间。
基于变量的数据类型,解释器分配内存并决定可以存储在保留的存储器中的内容。 因此,通过为变量分配不同的数据类型,可以在这些变量中存储的数据类型为整数,小数或字符等等。
将值分配给变量
在Python中,变量不需要明确的声明类型来保留内存空间。当向变量分配值时,Python会自动发出声明。 等号(=)用于为变量赋值。
=运算符左侧的操作数是变量的名称,而=运算符右侧的操作数是将在存储在变量中的值。 例如 -
#!/usr/bin/python3counter=100# 一个整型数miles=999.99# 一个浮点数name="Maxsu"# 一个字符串site_url="http://www.yiibai.com"# 一个字符串print(counter)print(miles)print(name)print(site_url)
这里,100,999.99和“Maxsu”分别是分配给counter,miles和name变量的值。执行上面代码将产生以下结果 -
100 999.99 Maxsu http://www.yiibai.com
Shell
多重赋值
Python允许同时为多个变量分配单个值。
例如 -
a=b=c=1
这里,创建一个整数对象,其值为1,并且所有三个变量都分配给相同的内存位置。还可以将多个对象分配给多个变量。 例如 -
a,b,c=10,20,"maxsu"
这里,将两个值为10和20的整数对象分别分配给变量a和b,并将一个值为“maxsu”的字符串对象分配给变量c。
标准数据类型
存储在内存中的数据可以是多种类型。 例如,一个人的年龄可存储为一个数字值,他的地址被存储为字母数字字符串。 Python具有各种标准数据类型,用于定义可能的操作以及每个标准数据类型的存储方法。
Python有五种标准数据类型 -
1.数字
2.字符串
3.列表
4.元组
5.字典
1.Python数字
数字数据类型存储数字值。当为其分配值时,将创建数字对象。 例如 -
var1=10var2=20
可以使用del语句删除对数字对象的引用。del语句的语法是 -
delvar1[,var2[,var3[....,varN]]]]
可以使用del语句删除单个对象或多个对象。
例如 -
delvardelvar_a,var_b
Python支持三种不同的数值类型 -
int(有符号整数)
float(浮点实值)
complex(复数)
Python3中的所有整数都表示为长整数。 因此,长整数没有单独的数字类型。
例子
以下是一些数字示例 -
复数是由x + yj表示的有序对的实数浮点数组成,其中x和y是实数,j是虚数单位。
2.Python字符串
Python中的字符串被标识为在引号中表示的连续字符集。Python允许双引号或双引号。 可以使用片段运算符([]和[:])来获取字符串的子集(子字符串),其索引从字符串开始处的索引0开始,并且以-1表示字符串中的最后一个字符。
加号(+)是字符串连接运算符,星号(*)是重复运算符。例如 -
#!/usr/bin/python3
#coding=utf-8
# save file: variable_types_str1.py
str = 'yiibai.com'
print ('str = ', str) # Prints complete string
print ('str[0] = ',str[0]) # Prints first character of the string
print ('str[2:5] = ',str[2:5]) # Prints characters starting from 3rd to 5th
print ('str[2:] = ',str[2:]) # Prints string starting from 3rd character
print ('str[-1] = ',str[-1]) # 最后一个字符,结果为:'!'
print ('str * 2 = ',str * 2) # Prints string two times
print ('str + "TEST" = ',str + "TEST") # Prints concatenated string
Python
将上面代码保存到 variable_types_str1.py 文件中,执行将产生以下结果 -
F:\worksp\python>python variable_types_str1.py
str = yiibai.com
str[0] = y
str[2:5] = iba
str[2:] = ibai.com
str[-1] = m
str * 2 = yiibai.comyiibai.com
str + "TEST" = yiibai.comTEST
F:\worksp\python>
Shell
2.Python列表
列表是Python复合数据类型中最多功能的。 一个列表包含用逗号分隔并括在方括号([])中的项目。在某种程度上,列表类似于C语言中的数组。它们之间的区别之一是Python列表的所有项可以是不同的数据类型,而C语言中的数组只能是同种类型。
存储在列表中的值可以使用切片运算符([]和[])来访问,索引从列表开头的0开始,并且以-1表示列表中的最后一个项目。 加号(+)是列表连接运算符,星号(*)是重复运算符。例如 -
#!/usr/bin/python3
#coding=utf-8
# save file: variable_types_str1.py
list = [ 'yes', 'no', 786 , 2.23, 'minsu', 70.2 ]
tinylist = [100, 'maxsu']
print ('list = ', list) # Prints complete list
print ('list[0] = ',list[0]) # Prints first element of the list
print ('list[1:3] = ',list[1:3]) # Prints elements starting from 2nd till 3rd
print ('list[2:] = ',list[2:]) # Prints elements starting from 3rd element
print ('list[-3:-1] = ',list[-3:-1])
print ('tinylist * 2 = ',tinylist * 2) # Prints list two times
print ('list + tinylist = ', list + tinylist) # Prints concatenated lists
Python
将上面代码保存到 variable_types_str1.py 文件中,执行将产生以下结果 -
F:\worksp\python>python variable_types_list.py
list = ['yes', 'no', 786, 2.23, 'minsu', 70.2]
list[0] = yes
list[1:3] = ['no', 786]
list[2:] = [786, 2.23, 'minsu', 70.2]
list[-3:-1] = [2.23, 'minsu']
tinylist * 2 = [100, 'maxsu', 100, 'maxsu']
list + tinylist = ['yes', 'no', 786, 2.23, 'minsu', 70.2, 100, 'maxsu']
F:\worksp\python>
Shell
3.Python元组
元组是与列表非常类似的另一个序列数据类型。元组是由多个值以逗号分隔。然而,与列表不同,元组被括在小括号内(())。
列表和元组之间的主要区别是 - 列表括在括号([])中,列表中的元素和大小可以更改,而元组括在括号(())中,无法更新。元组可以被认为是只读列表。 例如 -
#!/usr/bin/python3
#coding=utf-8
# save file : variable_types_tuple.py
tuple = ( 'maxsu', 786 , 2.23, 'yiibai', 70.2 )
tinytuple = (999.0, 'maxsu')
# tuple[1] = 'new item value' 不能这样赋值
print ('tuple = ', tuple) # Prints complete tuple
print ('tuple[0] = ', tuple[0]) # Prints first element of the tuple
print ('tuple[1:3] = ', tuple[1:3]) # Prints elements starting from 2nd till 3rd
print ('tuple[-3:-1] = ', tuple[-3:-1]) # 输出结果是什么?
print ('tuple[2:] = ', tuple[2:]) # Prints elements starting from 3rd element
print ('tinytuple * 2 = ',tinytuple * 2) # Prints tuple two times
print ('tuple + tinytuple = ', tuple + tinytuple) # Prints concatenated tuple
Python
将上面代码保存到 variable_types_tuple.py 文件中,执行将产生以下结果 -
F:\worksp\python>python variable_types_tuple.py
tuple = ('maxsu', 786, 2.23, 'yiibai', 70.2)
tuple[0] = maxsu
tuple[1:3] = (786, 2.23)
tuple[-3:-1] = (2.23, 'yiibai')
tuple[2:] = (2.23, 'yiibai', 70.2)
tinytuple * 2 = (999.0, 'maxsu', 999.0, 'maxsu')
tuple + tinytuple = ('maxsu', 786, 2.23, 'yiibai', 70.2, 999.0, 'maxsu')
F:\worksp\python>
Shell
以下代码对于元组无效,因为尝试更新元组,但是元组是不允许更新的。类似的情况可能与列表 -
#!/usr/bin/python3
tuple = ( 'abcd', 786 , 2.23, 'john', 70.2 )
list = [ 'abcd', 786 , 2.23, 'john', 70.2 ]
tuple[2] = 1000 # 无法更新值,程序出错
list[2] = 1000 # 有效的更新,合法
Python
Python字典
Python的字典是一种哈希表类型。它们像Perl中发现的关联数组或散列一样工作,由键值对组成。字典键几乎可以是任何Python数据类型,但通常为了方便使用数字或字符串。另一方面,值可以是任意任意的Python对象。
字典由大括号({})括起来,可以使用方括号([])分配和访问值。例如 -
#!/usr/bin/python3
#coding=utf-8
# save file : variable_types_dict.py
dict = {}
dict['one'] = "This is one"
dict[2] = "This is my"
tinydict = {'name': 'maxsu', 'code' : 1024, 'dept':'IT Dev'}
print ("dict['one'] = ", dict['one']) # Prints value for 'one' key
print ('dict[2] = ', dict[2]) # Prints value for 2 key
print ('tinydict = ', tinydict) # Prints complete dictionary
print ('tinydict.keys() = ', tinydict.keys()) # Prints all the keys
print ('tinydict.values() = ', tinydict.values()) # Prints all the values
Python
将上面代码保存到 variable_types_dict.py 文件中,执行将产生以下结果 -
F:\worksp\python>python variable_types_dict.py
dict['one'] = This is one
dict[2] = This is my
tinydict = {'name': 'maxsu', 'code': 1024, 'dept': 'IT Dev'}
tinydict.keys() = dict_keys(['name', 'code', 'dept'])
tinydict.values() = dict_values(['maxsu', 1024, 'IT Dev'])
Shell
字典中的元素没有顺序的概念。但是说这些元素是“乱序”是不正确的; 它们是无序的。
数据类型转换
有时,可能需要在内置类型之间执行转换。要在类型之间进行转换,只需使用类型名称作为函数即可。
有以下几种内置函数用于执行从一种数据类型到另一种数据类型的转换。这些函数返回一个表示转换值的新对象。它们分别如下所示 -
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13