京公网安备 11010802034615号
经营许可证编号:京B2-20210330
以大数据变革教育
大数据已经被商业世界热烈拥抱了。现在,是时候让我们来看一看在教育方面,大数据可以如何运用了。
简而言之,人们使用网站的每一次行为都被追踪和记录,这些数据被收集、汇总并分析,就是大数据。我们都对亚马逊这类网站非常熟悉——当我们很喜欢某一本书时,我们很可能喜欢与之主题相似的另一本书。这些推荐都基于收集的海量顾客数据,而且确实行之有效。毫无疑问,这优化了顾客的购物体验。
直到最近,这种技术才被开始用于改善学生的学习体验。就高等教育领域的教学而言,我们可能无法从典型意义上真正掌握数以千计的学生,但是现在我们开发了“慕课”这种免费向所有人开放的课程,而且对参与者的数量没有限制。那么,我们能否从商业使用大数据的经验中有所借鉴,然后将其应用于在线教育上呢?通过观察学生在线上的学习习惯,这些数据可以帮助我们让学生学习得更有效率吗?答案是:应该可以,但可能没那么简单。
不同于传统研究,从“慕课”上收集的数据无法简单地统领于一个研究问题之下,这些数据仅仅是用户与系统互动的副产品。因此,我们必须考虑,基于这些数据,我们可以提出怎样的问题。这不是人们从事科学研究所习惯的顺序——首先收集数据,然后在数据的基础上提出问题。当然,我们应该采用正确的方法处理大数据,因为它能告诉我们很多非常有用的信息。
我曾经在世界三大“慕课”平台之一的Coursera上开设了一门信息和通信技术初级课程。其中有超过2000人的选课者来自新经济体国家。这一群体需要访问免费的关于信息和通信技术的工具以及资源,在互联网欠发达的地区尤其如此。这一信息影响了我们对该课程最初的一些活动设置。这一平台同时也告诉我们许多数据,比如每周课程的退课率,哪些课程活动选课者花了最多的时间,哪些又被他们忽略了等等。
但是,这些数据仅仅能告诉我们从哪里提出问题,却无法告诉我们该怎样解释选课者的某些行为习惯,也不会告诉我们该如何应对这些问题。想要把数据用于“设计—测试—再设计”这一过程,就需要一个设计目标。讲课者与整个班级的目标是达成某些学习成果,他们设计某些活动、收集学生表现的数据,解释这些数据,从而优化课堂设计,以期更好地达到教学目标。
这一切看上去很美好,但是这一过程并不会生成大数据。这是本科数据,与课程主讲者的特定学习设计有关。我们不可能对其进行大范围的测试,也没有独立的同行检测,从这个意义上说,它算不得科学。
令人兴奋的是,如今有了这个大样本量的学习平台,学习数据不需要保持所谓的本地属性。如果学习设计(学习活动的规划和管理)可以被其他讲课者使用,而这些讲课者也可以从学生身上收集相同的数据,这就变得可以广泛地检验了,也可由一些独立同行进行评审,并给出建议,重新设计课程。
目前,网络上有一些关于学习活动的设计工具,讲课者通过它们分享彼此的教学心得。如果众多讲课者通过软件进行课程设计,而学生也使用同样的数字化工具汇集他们的表现数据,我们就可以得到基于大样本量的海量数据。而且,这种大数据是处于主讲者的控制之下的——主讲者根据未来课程设计的需要,决定他们需要何种类型的数据。
大数据可以优化教学,但是不能离开教育者对数据的掌控。目前,这一领域的开发基本上都是由技术型的专业人士来完成,但这些人并非教育者,也从来没有进行过网上教学。因此,我们可以招募所有的讲课者一同合作和研发,进行他们自己的大样本数据收集与分析。届时,大数据才真正可以有所作为。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28