
以大数据变革教育
大数据已经被商业世界热烈拥抱了。现在,是时候让我们来看一看在教育方面,大数据可以如何运用了。
简而言之,人们使用网站的每一次行为都被追踪和记录,这些数据被收集、汇总并分析,就是大数据。我们都对亚马逊这类网站非常熟悉——当我们很喜欢某一本书时,我们很可能喜欢与之主题相似的另一本书。这些推荐都基于收集的海量顾客数据,而且确实行之有效。毫无疑问,这优化了顾客的购物体验。
直到最近,这种技术才被开始用于改善学生的学习体验。就高等教育领域的教学而言,我们可能无法从典型意义上真正掌握数以千计的学生,但是现在我们开发了“慕课”这种免费向所有人开放的课程,而且对参与者的数量没有限制。那么,我们能否从商业使用大数据的经验中有所借鉴,然后将其应用于在线教育上呢?通过观察学生在线上的学习习惯,这些数据可以帮助我们让学生学习得更有效率吗?答案是:应该可以,但可能没那么简单。
不同于传统研究,从“慕课”上收集的数据无法简单地统领于一个研究问题之下,这些数据仅仅是用户与系统互动的副产品。因此,我们必须考虑,基于这些数据,我们可以提出怎样的问题。这不是人们从事科学研究所习惯的顺序——首先收集数据,然后在数据的基础上提出问题。当然,我们应该采用正确的方法处理大数据,因为它能告诉我们很多非常有用的信息。
我曾经在世界三大“慕课”平台之一的Coursera上开设了一门信息和通信技术初级课程。其中有超过2000人的选课者来自新经济体国家。这一群体需要访问免费的关于信息和通信技术的工具以及资源,在互联网欠发达的地区尤其如此。这一信息影响了我们对该课程最初的一些活动设置。这一平台同时也告诉我们许多数据,比如每周课程的退课率,哪些课程活动选课者花了最多的时间,哪些又被他们忽略了等等。
但是,这些数据仅仅能告诉我们从哪里提出问题,却无法告诉我们该怎样解释选课者的某些行为习惯,也不会告诉我们该如何应对这些问题。想要把数据用于“设计—测试—再设计”这一过程,就需要一个设计目标。讲课者与整个班级的目标是达成某些学习成果,他们设计某些活动、收集学生表现的数据,解释这些数据,从而优化课堂设计,以期更好地达到教学目标。
这一切看上去很美好,但是这一过程并不会生成大数据。这是本科数据,与课程主讲者的特定学习设计有关。我们不可能对其进行大范围的测试,也没有独立的同行检测,从这个意义上说,它算不得科学。
令人兴奋的是,如今有了这个大样本量的学习平台,学习数据不需要保持所谓的本地属性。如果学习设计(学习活动的规划和管理)可以被其他讲课者使用,而这些讲课者也可以从学生身上收集相同的数据,这就变得可以广泛地检验了,也可由一些独立同行进行评审,并给出建议,重新设计课程。
目前,网络上有一些关于学习活动的设计工具,讲课者通过它们分享彼此的教学心得。如果众多讲课者通过软件进行课程设计,而学生也使用同样的数字化工具汇集他们的表现数据,我们就可以得到基于大样本量的海量数据。而且,这种大数据是处于主讲者的控制之下的——主讲者根据未来课程设计的需要,决定他们需要何种类型的数据。
大数据可以优化教学,但是不能离开教育者对数据的掌控。目前,这一领域的开发基本上都是由技术型的专业人士来完成,但这些人并非教育者,也从来没有进行过网上教学。因此,我们可以招募所有的讲课者一同合作和研发,进行他们自己的大样本数据收集与分析。届时,大数据才真正可以有所作为。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02