京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析技术:卡方检验;问卷(试卷)信度分析原理
今天介绍的是卡方检验。卡方检验是以卡方分布为基础的一种检验方法,主要用于分类变量(定义数据和定序数据),适用于频率数据的分析数据。常用于检验总体分布是否服从指定的分布的一种非参数检验的统计方法,可用于两个或多个频率间的比较、样本关联度分析和拟合优度检验等。拟合优度检验就是检验通过检验某一变量的实际观测频率和期望理论频率是否吻合,若吻合,则证明样本在该变量上的频率分布与总体理论分布相同。
卡方检验的基本假设
原假设:实际观测频率和期望理论频率分布之间无显著差异。
备择假设:实际观测频率和期望理论频率分布之间显著差异。
卡方统计量
很显然,实际频率与期望频率越接近,卡方值就越小。若卡方值为0,则上式中分子的每一项都必须是0,这意味着k类中每一类观察频率与期望频率完全一样,即完全拟合。卡方统计量可以用来测度实际观察频率与期望频率之间的拟合程度。
卡方检验的应用
推断耽搁样本的频率分布是否等于某种给定的理论分布;
检验两个及两个以上样本的总体分布是否相同;
定性资料的关联性分析;
线性趋势分析;
卡方检验步骤
建立虚无假设。为考察变量之间差异的显著性,卡方检验首先要建立虚无假设,一般假设为实际频率和理论频率无显著差异。
计算理论频率和卡方值。
依据分析计算结果进行统计推断。根据自由度和设定的显著性水平值,查卡方值表,将实际计算所得的卡方值在相应的显著水平上进行比较,据此做出接受或拒绝虚无假设的判断。
案例分析
社会科学研究领域,很多的研究数据都来自问卷调查。问卷收集数据效果的好坏,需要做信度分析,信度分析就是为了看看问卷的填写者是否是胡乱填写答案的,如果很大部分的问卷填写者都是随机选择选项的,选项的分布就会比较均匀,卡方检验可以用来判断每题答案的分布是否均值(显著性差异)。
某学校社科院为真实了解学生的英语学习态度,随机抽取部分学生做问卷调查,其中包括这样两个问题:1、你认为英语学习态度的决定因素是什么?2、你认为当前的大学生英语学习态度如何?
分析步骤
1、选择菜单【分析】-【非参数检验】-【旧对话框】-【卡方】,打开卡方检验对话框;将第1题:你认为英语学习态度的决定因素是什么?和第2题:你认为当前的大学生英语学习态度如何?选入检验变量列表。

2、期望范围;用于设定需检验的变量的取值范围,在此范围之外的取值将不进入分析。此设置共两个选项,即“从数据中获取”和“使用指定范围”。“从数据中获取”:表示检验变量的取值范围使用数据文件的最大值和最小值所确定的范围,该项为系统默认设置。“使用指定的范围”:即自行制定检验的取值范围,激活该项后,研究者可在“下限”和“上限”中分别输入检验范围的下限和上限。本例选择系统默认项。
3、期望值;用于指定已知总体的各分类构成比。包含“所有类别相等”和“值”两个选项。“所有类别相等”也就是设定各类别构成比例相等,即意味着检验的总体是服从均匀分布的。此为系统默认项。“值”用于自行定义类别构成的比例,每输入一个值后单击“添加”,系统自动将其输入右边的列表框。输入数值必须大于0,重复以上操作直到输完为止。输入值时要注意输入顺序一定要和变量递增顺序一致。本例选择此项设置。
4、检验精度设置;单击【精确】,打开精确检验。它包括3个选项:“仅渐进法”、“Monte Carlo”和“精确”。
“仅渐进法”:该项给出基于检验统计的渐进分布的显著性水平。渐进显著性是基于大数据集的假设,通常小于0.05的值被认为是显著的。如果数据集较小或者分布较差,它可能不会很好地指示显著性。该项为系统默认选项。
“Monte Carlo”:该项给出精确显著性水平的无偏估计,其计算方法是从与观察到的表具有相同维数和行列界限的参考报集中重复地取样。Monte Carlo法使分析不依赖于渐进法所必需的假设就能估计精确的显著性。当数据集太大而无法计算精确的显著性,而且数据又不满足渐进法的假设时,此法最有用。其中的“置信度”默认值为99%;“样本数”用于指定计算的样本数目,样本数目越大显著性水平越可靠,默认值为10000。
“精确”:该项用于精确地计算观察到的输出或更极端的输入的概率。通常认为小于0.05的显著性水平是显著的,表示行变量和列变量之间存在的某种关系。“每个检验的时间限制为”用于限定进行每个检验所使用的最长时间,如果超过30min,则用“Monte Carlo”法比较合适。
对于该项,本例选择系统默认设置,设置完毕后,单击“继续”。
5、输入结果检验;单击“确定”,输出卡方检验结果。
结果解读
由本次卡方检验的统计表可得:“题1”和“题2”的卡方值分别为243.195和85.366,而渐进显著性P值均为0.000,小于0.001,拒绝虚无假设,说明“题1”和“题2”的选项被实际勾选的频率与期望值差异非常显著。也就是说,大部分的问卷的填写者有能够认真的填写问卷,问卷收集数据的结果可信。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12