
SPSS分析技术:卡方检验;问卷(试卷)信度分析原理
今天介绍的是卡方检验。卡方检验是以卡方分布为基础的一种检验方法,主要用于分类变量(定义数据和定序数据),适用于频率数据的分析数据。常用于检验总体分布是否服从指定的分布的一种非参数检验的统计方法,可用于两个或多个频率间的比较、样本关联度分析和拟合优度检验等。拟合优度检验就是检验通过检验某一变量的实际观测频率和期望理论频率是否吻合,若吻合,则证明样本在该变量上的频率分布与总体理论分布相同。
卡方检验的基本假设
原假设:实际观测频率和期望理论频率分布之间无显著差异。
备择假设:实际观测频率和期望理论频率分布之间显著差异。
卡方统计量
很显然,实际频率与期望频率越接近,卡方值就越小。若卡方值为0,则上式中分子的每一项都必须是0,这意味着k类中每一类观察频率与期望频率完全一样,即完全拟合。卡方统计量可以用来测度实际观察频率与期望频率之间的拟合程度。
卡方检验的应用
推断耽搁样本的频率分布是否等于某种给定的理论分布;
检验两个及两个以上样本的总体分布是否相同;
定性资料的关联性分析;
线性趋势分析;
卡方检验步骤
建立虚无假设。为考察变量之间差异的显著性,卡方检验首先要建立虚无假设,一般假设为实际频率和理论频率无显著差异。
计算理论频率和卡方值。
依据分析计算结果进行统计推断。根据自由度和设定的显著性水平值,查卡方值表,将实际计算所得的卡方值在相应的显著水平上进行比较,据此做出接受或拒绝虚无假设的判断。
案例分析
社会科学研究领域,很多的研究数据都来自问卷调查。问卷收集数据效果的好坏,需要做信度分析,信度分析就是为了看看问卷的填写者是否是胡乱填写答案的,如果很大部分的问卷填写者都是随机选择选项的,选项的分布就会比较均匀,卡方检验可以用来判断每题答案的分布是否均值(显著性差异)。
某学校社科院为真实了解学生的英语学习态度,随机抽取部分学生做问卷调查,其中包括这样两个问题:1、你认为英语学习态度的决定因素是什么?2、你认为当前的大学生英语学习态度如何?
分析步骤
1、选择菜单【分析】-【非参数检验】-【旧对话框】-【卡方】,打开卡方检验对话框;将第1题:你认为英语学习态度的决定因素是什么?和第2题:你认为当前的大学生英语学习态度如何?选入检验变量列表。
2、期望范围;用于设定需检验的变量的取值范围,在此范围之外的取值将不进入分析。此设置共两个选项,即“从数据中获取”和“使用指定范围”。“从数据中获取”:表示检验变量的取值范围使用数据文件的最大值和最小值所确定的范围,该项为系统默认设置。“使用指定的范围”:即自行制定检验的取值范围,激活该项后,研究者可在“下限”和“上限”中分别输入检验范围的下限和上限。本例选择系统默认项。
3、期望值;用于指定已知总体的各分类构成比。包含“所有类别相等”和“值”两个选项。“所有类别相等”也就是设定各类别构成比例相等,即意味着检验的总体是服从均匀分布的。此为系统默认项。“值”用于自行定义类别构成的比例,每输入一个值后单击“添加”,系统自动将其输入右边的列表框。输入数值必须大于0,重复以上操作直到输完为止。输入值时要注意输入顺序一定要和变量递增顺序一致。本例选择此项设置。
4、检验精度设置;单击【精确】,打开精确检验。它包括3个选项:“仅渐进法”、“Monte Carlo”和“精确”。
“仅渐进法”:该项给出基于检验统计的渐进分布的显著性水平。渐进显著性是基于大数据集的假设,通常小于0.05的值被认为是显著的。如果数据集较小或者分布较差,它可能不会很好地指示显著性。该项为系统默认选项。
“Monte Carlo”:该项给出精确显著性水平的无偏估计,其计算方法是从与观察到的表具有相同维数和行列界限的参考报集中重复地取样。Monte Carlo法使分析不依赖于渐进法所必需的假设就能估计精确的显著性。当数据集太大而无法计算精确的显著性,而且数据又不满足渐进法的假设时,此法最有用。其中的“置信度”默认值为99%;“样本数”用于指定计算的样本数目,样本数目越大显著性水平越可靠,默认值为10000。
“精确”:该项用于精确地计算观察到的输出或更极端的输入的概率。通常认为小于0.05的显著性水平是显著的,表示行变量和列变量之间存在的某种关系。“每个检验的时间限制为”用于限定进行每个检验所使用的最长时间,如果超过30min,则用“Monte Carlo”法比较合适。
对于该项,本例选择系统默认设置,设置完毕后,单击“继续”。
5、输入结果检验;单击“确定”,输出卡方检验结果。
结果解读
由本次卡方检验的统计表可得:“题1”和“题2”的卡方值分别为243.195和85.366,而渐进显著性P值均为0.000,小于0.001,拒绝虚无假设,说明“题1”和“题2”的选项被实际勾选的频率与期望值差异非常显著。也就是说,大部分的问卷的填写者有能够认真的填写问卷,问卷收集数据的结果可信。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27