京公网安备 11010802034615号
经营许可证编号:京B2-20210330
中国航天领域大数据应用
近年来,随着我国综合国力的提升,航天事业得到了飞速发展。航天领域在研制、运行和发布成果的全过程中,都会产生大数据和应用大数据的需求,数据既是航天理论的基础,又是航天实践的基石,因而航天领域是大数据应用最早也最成熟,取得成果最多的领域。
航天要对尺度远比地球大无数倍的广阔空间进行探索,其总量更多,要求更高。如果没有及时而精确的大数据支持,哪怕是一个小数点的错误,也会影响全局的成败。因此,航天大数据不仅具有一般大数据的特点,更要求高可靠性和高价值。数据可视化是大数据领域所有价值的终极呈现,而航天领域的可视化,缘其数据总量更多,精确度更高,价值更高,一直被誉为数据可视化领域之巅。
“军民融合”是我国改革开放以来国防科技工业改革与发展的总方针。目前,我国的一些自主企业在航天大数据可视化领域已经具备成熟的技术,以数字冰雹为例,其参与了国家多项航天科研项目,为我国多项航天任务提供了的可视化技术支撑。基于指挥监控中心大屏可视化,可以实现对航天测发、测控设备控制;航天指挥作战体系模拟推演、作战评估;航天作战指挥显示控制航天器数据分析、状态监控。
一、全三维空间环境仿真
如今,航天领域的可视化范围已经从地球延伸至整个宇宙空间,这就对空间环境的逼真性和精确度提出了更高的要求。想要对空间环境进行更加逼真的态势显示,就需要利用三维视图结合虚拟现实技术,真实刻画地球和宇宙空间环境,逼真呈现地球和太空乃至其他行星的精确位置,并且呈现实时的光照、云层、大气圈和反射等渲染效果。支持全球高程显示,超精细细节,超大范围地形展示,并且视角范围可从全球视角无级放大至微观细节观察视角,实现全空间范围的环境态势显示,以最佳方式实现宇宙环境可视化和空天态势可视化。
二、 航天器三维仿真
航天器的仿真效果对于航天测发、测控、模拟演练、航天器数据分析、状态监控的展现以及提升指挥员的态势认知,提高决策质量有着越来越重要的影响。这就要求可视化系统基于三维实时渲染引擎,并且结合高度逼真的图像渲染,配置多种可进行存储、积累和复用的大范围地形数据可视化模型、可视化模型数据库、可视化效果库,构建多领域多层次仿真系统,以保证可视化效果高水准呈现。支持对卫星采集数据的可视化分析,支持添加各种辅助标识,表现各种不同类型探测器的探测范围、通讯链路等效果。同时,航天器的位置、运行的轨迹、空中的姿态等动态呈现,全部可以基于数据实时驱动,并且能够通过网络接收实时数据并与后台数据平台对接,驱动仿真画面实时更新。
三、航天任务流程仿真
航天任务是一项涉及众多专业领域的复杂系统工程,因此常常需要对航天任务中的各要素进行模拟、分析与仿真,以支持航天任务的设计论证。为了对任务执行过程和状态进行仿真呈现,使相关人员直观地看到航天任务执行的动态过程并了解航天任务的执行状态等信息,就需要将二三维地理信息系统与航天任务内容相结合,利用三维可视化技术将任务流程可视化,真实再现任务过程中信息的流动和动态演化,为航天任务的综合效能评估提供逼真的空间环境模拟和数据支持。还要支持对复杂的任务流程进行推演和分析,并可在实时监控状态和规划数据进行比对,以及根据实际数据对历史态势进行回放。
四、航天数据可视分析
在各项航天任务过程中产生的数据具有数据量大、数据类型复杂多样及关联性强的特点,为了将海量的基础数据和结果数据进行有效管理和分析,就需要科学的分析算法,针对海量数据繁多的指标与维度,按主题、成体系地进行多维度的实时交互分析,并提供上卷、下钻、切片、切块、旋转等数据观察方式,呈现复杂数据背后的联系,帮助用户从不同角度分析数据、展示数据的不同影响。还应支持分析算法模块扩充,支持嵌入各种仿真计算模型,为更加复杂的行业应用提供支持。
五、大屏多屏环境支持
大屏幕显示系统已经成为信息可视化不可或缺的核心基础,针对航天领域数据量大、可视化精度高的特点,对大屏可视化环境的的要求也越来越高。航天领域的大屏多屏环境要满足超高像素全屏点对点输出,视网膜级分辨率,清晰、细腻、惊艳的显示画面。支持多屏拼控,显示内容自由布局组合。并可通过PAD手持设备作为控制终端来实现对大屏的交互控制。系统内置对矩阵、拼控设备的控制支持,实现软件根据投放内容需要自动切换大屏幕布局场景,大幅度降低使用过程中的交互复杂程度。
习近平总书记强调,星空浩瀚无比,探索永无止境,只有不断创新,中华民族才能更好走向未来。我们正在实施创新驱动发展战略,这是决定我国发展未来的重大战略。航天科技是科技进步和创新的重要领域,航天科技成就是国家科技水平和科技能力的重要标志。希望将来能有更多的先进技术为我们空间科学的发展提供“中国力量”,落实航天大数据的应用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12