京公网安备 11010802034615号
经营许可证编号:京B2-20210330
生命大数据将进入寻常百姓生活
人的一生,简单的讲,不外乎“生老病死”。我们能抗争的、个体差异最大的就是“病”了。几千年文化、知识、技术、经验的累积,人类对自身健康状况的了解以及疾病干预的能力都大大提高。然而,我们对自身健康的掌控能力离预期还远远不够,面对各类疾病缺少深入的了解、精细的分类和有针对性的治疗。
旨在正确的时间,给正确的人,使用正确的药物的“精准医疗”应运而生。获取和掌握组学、临床信息等生命大数据里包含的海量信息是医疗迈向精准的重要前提。生命大数据的累积和挖掘将逐步揭示健康与疾病的全景关联图。
生命大数据支撑精准医学研究
人类基因组计划(human genome project,HGP)、基因组单体型图计划(hapmapproject)、全基因组关联分析(genome-wide association study,GWAS)、DNA元件百科全书(encyclopedia of DNA elements,ENCODE)、表观路线图(NIH roadmap epigenomics)等大型组学计划的顺利完成,带动了生命科学领域的重大变革。
高通量测序、高性能质谱等组学技术得以快速发展,生命科学研究产生了大量有价值的包括基因组学、转录组学、蛋白质组学、代谢组学等在内的“生物大数据”。整合分析多重组学数据和临床资料,构建健康与疾病的知识网络,将有望对疾病发展和不同病理状态进行更加准确的分类,为不同遗传背景的患者提供个体化诊断及精准治疗。
很显然,科学家们都已经意识到各类生命大数据的重要作用。然而,以上重要的大型组学计划均由欧美国家发起,获得的数据主要基于欧美人群。中国人口众多,遗传背景与欧美人群有较大差异。实现中国人民的精准医疗,则需要中国人群的生命大数据来推动。
中科院在2015年启动重点部署项目“中国人群精准医学研究计划”,将在4年内完成4000名志愿者的DNA样本和多种表现型数据的采集,并对其中2000人进行深入的精准医学研究,包括全基因组序列分析,建立基因组健康档案,针对一些重要慢性病的遗传信号开展疾病风险和药物反应的预警和干预研究。这些数据将会成为非常宝贵的中国人群遗传信息资源。
科技部于2016年3月8日公布《关于发布国家重点研发计划精准医学研究等重点专项2016年度项目申报指南的通知》,拉开了精准医疗重大专项科研行动的序幕。本年度的科研专项包括构建百万人以上的自然人群国家大型健康队列和重大疾病专病队列,建立生物医学大数据共享平台等。
在国家战略需求层面,生命大数据研究正如火如荼的开展起来,为精准医学研究打下基础。这一系列大数据项目的开展,将建设一套符合我国国情的生命大数据的获取、分析、存储、使用等规范;多个与健康相关的中国人群生命大数据知识库;面向科研人员和医务工作者的友好共享数据平台等等。基于这些大数据挖掘生命动态规律,将是通向精准医疗的重要基石。
综合组学大数据和临床大数据挖掘生命规律
生命大数据包含的种类繁多,包括基因组、转录组、蛋白组、表观组、宏基因组等各类组学数据和影像、生化指标、标型特征等各类临床数据。我国各类组学数据主要产生于科研院所和高校,临床数据主要来源于各类医疗机构。
整合多类数据,挖掘深层机制无疑是行之有效的方法。过去的整合分析主要是限于各类组学数据内部,例如综合组蛋白修饰数据、转录组数据和染色质相互作用数据筛查全基因组范围内的顺式作用元件。当面对精准医疗,需要明确疾病的不同亚型及对应的分子机制,以及合适的治疗方案,大数据在整合分析、挖掘时则必须要加上临床大数据。
在2016年,多家科研机构和医疗机构联合起来,共同攻关生命大数据:
中科院北京基因组研究所联合中科院生物物理研究所、浙江大学、复旦大学、国家卫计委信息统计中心、北大人民医院、中南大学湘雅医院系统等构建精准医学大数据处理和利用的标准化技术体系。
军事医学科学院放射与辐射医学研究所联合多家机构构建精准医学大数据管理和共享技术平台。
少量生命大数据的研究成果已经进入普通百姓的视野
在媒体的大力宣传下,大数据和精准医疗的概念已出现在普通百姓的生活中。一些基于生命大数据的成果已经被用到普通消费者身上,最为常见的就是基因检测了。
通过对具有特定特征(如患某种疾病)的人群和对照人群进行遗传物质的对比和关联研究,可挖掘出一些与该特征相关的基因位点。一些商业公司将同类疾病的不同研究结果综合起来,评估消费者患某类疾病的风险。这被认为是一个很酷、有用、拥有巨大商业前景的行业,因此近一两年内成立了许多面向普通消费者的基因检测公司。
“十三五”期间的生命大数据
我国的精准医疗从今年开始落地实施,研究内容涉及到大规模人群队列研究和精准医学大数据研究。可以预见,在三到五年内,将会产生大量中国人群的各类生命大数据以及对应的知识注释。
一方面,这些大数据将有望打破欧美国家对生命大数据的垄断,形成世界范围内的新布局;同时,将有力推动我国生命科学研究和健康事业;此外,阶段性的成果也可能会被单独拿出来,直接走向面对普通消费者的商业模式中(就像基因检测一样)。
伴随着美好愿景的,也一定还有潜在问题:
1、我国还缺乏一个国家级的、被广大科研人员认可的数据存储、使用、共享平台;
2、大数据的安全与管理也是重中之重;
3、各类公司带着一些成果直接面向普通消费者,但缺乏统一、可用的行业标准,不当的基因解读有可能伤害一些消费者,造成普通百姓对大数据行业的误解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27