
【SQL揭秘】有多少种数据库,就有多少类CTE
Common Table Expression
Common table expression简称CTE,由SQL:1999标准引入,可以认为是在单个 SELECT、INSERT、UPDATE、DELETE 或 CREATE VIEW 语句的执行范围内定义的临时结果集。CTE 与派生表类似,具体表现在不存储为对象,并且只在查询期间有效。与派生表的不同之处在于,CTE 可自引用,还可在同一查询中引用多次。
目前支持CTE的数据库有Teradata, DB2, Firebird, Microsoft SQL Server, Oracle (with recursion since 11g release 2), PostgreSQL (since 8.4), MariaDB (since 10.2), SQLite (since 3.8.3), HyperSQL and H2 (experimental), MySQL8.0.
CTE的语法如下:
1、Non-recursive CTEs
2、Recursive CTEs
CTE的使用
CTE使语句更加简洁
例如以下两个语句表达的是同一语义,使用CTE比未使用CTE的嵌套查询更简洁明了。
1) 使用嵌套子查询
2) 使用CTE
CTE 可以进行树形查询
初始化这颗树
1) 层序遍历
2) 深度优先遍历
Oracle
Oracle从9.2才开始支持CTE, 但只支持non-recursive with, 直到Oracle 11.2才完全支持CTE。但oracle 之前就支持connect by 的树形查询,recursive with 语句可以与connect by语句相互转化。 一些相互转化案例可以参考这里.
Oracle recursive with 语句不需要指定recursive关键字,可以自动识别是否recursive.Oracle 还支持CTE相关的hint,
“MATERIALIZE”告诉优化器产生一个全局的临时表保存结果,多次引用CTE时直接访问临时表即可。而”INLINE”则表示每次需要解析查询CTE。
PostgreSQL
PostgreSQL从8.4开始支持CTE,PostgreSQL还扩展了CTE的功能, CTE的query中支持DML语句,例如
MariaDB
MariaDB从10.2开始支持CTE。10.2.1 支持non-recursive CTE, 10.2.2开始支持recursive CTE。 目前的GA的版本是10.1.
MySQL
MySQL从8.0开始支持完整的CTE。MySQL8.0还在development
阶段,RC都没有,GA还需时日。
AliSQL
AliSQL基于mariadb10.2, port了no-recursive CTE的实现,此功能近期会上线。
以下从源码主要相关函数简要介绍其实现,
//解析识别with table引用
find_table_def_in_with_clauses
//检查依赖关系,比如不能重复定义with table名字
With_clause::check_dependencies
// 为每个引用clone一份定义
With_element::clone_parsed_spec
//替换with table指定的列名
With_element::rename_columns_of_derived_unit
此实现对于多次引用CTE,CTE会解析多次,因此此版本CTE有简化SQL的作用,但效率上没有效提高。
select count(*) from t1 where c2 !='z';
+----------+
| count(*) |
+----------+
| 65536 |
+----------+
1 row in set (0.25 sec)
//从执行时间来看是进行了3次全表扫描
with t as (select count(*) from t1 where c2 !='z')
select * from t union select * from t union select * from t;
+----------+
| count(*) |
+----------+
| 65536 |
+----------+
1 row in set (0.59 sec)
select count(*) from t1 where c2 !='z'
union
select count(*) from t1 where c2 !='z'
union
select count(*) from t1 where c2 !='z';
+----------+
| count(*) |
+----------+
| 65536 |
+----------+
1 row in set (0.57 sec)
![]()
explain select count(*) from t1 where c2 !='z'
union
select count(*) from t1 where c2 !='z'
union
select count(*) from t1 where c2 !='z';
以下是MySQL8.0 只扫描一次的执行计划
以下是PostgreSQL9.4 只扫描一次的执行计划
AliSQL还有待改进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14