京公网安备 11010802034615号
经营许可证编号:京B2-20210330
拨开大数据的迷雾
企业的硬性层面(成本、速度、库存周转率、供应链以及资本效率等)是由可以精确量度的事物组成。硬性层面总能与计算机技术、数据和分析完美契合,这并不令人奇怪。据说,最古老的计算工具是用来算账的巴比伦算盘。罗马人的算盘则造得轻巧灵便、易于携带,为他们打造庞大的帝国起到了帮助。
企业硬性层面和数据分析的结合延续至今。企业是数据分析大师,例如上世纪80年代的沃尔玛(Wal-Mart)、90年代的戴尔(Dell)和如今的亚马逊(Amazon)与网飞(Netflix)。同时,我们所说的企业软性层面(比如设计与审美偏好、团队、信任、领导力、聪明才智和故事)始终存在于各自的领域、神秘世界和直觉里。最优秀的践行者被誉为天才而不是分析师,例如审美嗅觉敏锐的史蒂夫·乔布斯(Steve Jobs)、企业领袖导师杰克·韦尔奇(Jack Welch)、把产品当作故事推销的菲尔·耐特(Phil Knight)和创造激情的理查德·布兰森(Richard Branson)。这些软性品质不易量度,也不是易于传授的必要技能。
我有点夸大了企业硬性与软性层面之间的这种明显差异。最优秀的CEO总是能找到方法弥合这种差异。史蒂夫·乔布斯让精通数据分析的蒂姆·库克(Tim Cook)来管理苹果(Apple)业务经营的硬性层面。库克在这方面确实做得很好。迈克尔·埃斯纳(Michael Eisner)拯救了迪士尼(Disney),但他是在杰出的首席运营官弗兰克·威尔斯(Frank Wells)的辅佐下完成的。谷歌曾严重偏向于数据分析,甚至在其主页上测试了41种蓝色阴影以确定观众的反应。如今,谷歌给其平面设计师留有更多的发挥空间,使谷歌产品的观感得到了提升。
隐藏的惊喜
在大数据这个新时代里,问题已经变成:我们是否应该把软性层面交到直觉性很强的天才手中,或者是否应该利用大数据为软性层面增添严密性和逻辑性?这能做到吗?如果想打造一家成功的企业,就应该重视这些问题。
大数据现在无疑是个被过度使用的词语。我喜欢维克托·迈尔-舍恩伯格(Viktor Mayer-Schönberger)和肯尼斯·库克耶(Kenneth Cukier)在其著作《大数据时代:生活、工作与思维的大变革》(Big Data: A Revolution That Will Transform How We Live, Work, and Think)中对这个词语给出的解释。他们写到,大数据没有边际和结构,笼统但具有预测性,无法显示原因,但能显示关联性。
在这些方面,混乱无序的大数据更像是企业的软性层面而非硬性层面。那么,大数据能否帮助我们设计出更加迷人的产品,打造出优秀的团队和强大的文化,创造出令人难忘的品牌,使我们更具适应性?
这是个新的领域。大数据正在飞速演进,尚不清楚它能在哪些方面提供真正的洞察力,或者在哪个方面它只会造成代价高昂的干扰。大数据已经在信用卡检测等领域里取得明显成功,并有望用病人的少少几滴血就诊断出疾病。但对于想要出售产品或激励团队的企业领导者来说,大数据能干什么呢?
为了了解大数据的应用方式,我在这个夏天与多位CEO、设计师、营销人员和团队建设者进行了交谈,以便弄清楚大数据在哪些方面有用。这些人来自于各行各业大大小小的公司企业。
Nest Labs公司创始人兼CEO托尼·菲德尔(Tony Fadell)说出了他的看法。该公司是硅谷的一家智能恒温器制造商,其产品通过学习并掌握用户的供暖和制冷方式来节约费用。菲德尔曾在大师史蒂夫·乔布斯的麾下学习产品设计,十来年前iPod的问世也有他的一份功劳。
“大数据是否对Nest Labs公司设计其恒温器有所帮助?”我问道。
“没有。”菲德尔说,“好产品来源于好创意。你要为你自己设计它们。你要对数据说你需要的大多数功能说不。史蒂夫乔布斯就非常善于说不。但大数据展现了人们如何以你意想不到的方式来使用你的产品。在如何改进产品软件、如何与客户沟通以及如何建立忠诚度等方面,大数据提供了极好的观察点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12