
大数据症结所在:答案太多,问题太少
在解答为何如此之多的大数据项目会失败这个方面,我最喜爱的一个例子来自于几十年前的一本书——那个时候,“大数据”的概念甚至都还没有形成。在道格拉斯·亚当斯(Douglas Adams)所著的《搭车游览银河指南》(The Hitchhiker’s Guide to the Galaxy)一书中,某个种群的生物打造了一台超级计算机来计算“生命、宇宙及所有一切”的意义。
在经过几百年的运算之后,这台计算机宣布,答案是“42”。当这个种群的生物表示反对时,这台计算机则平静地建议说,既然他们已经有了答案,现在他们需要知道的是,真正的问题到底是什么——一个需要一台更大、更复杂的计算机完成的任务。
这是有关大数据的一个绝妙的比喻,因为它反映了一个事实:数据本身是无意义的。
请记住,数据的价值并不在于数据本身——而是在于你能用数据做些什么。要使数据有用,你必须首先明白你需要什么样的数据,否则你总会想要掌握一切数据——这并不是恰当的策略,而是一种注定会失败的绝望行为。
如果你不将或无法通过数据来交付商业洞见,那为什么还要花费时间和精力去收集数据呢?你必须专注于最重要的事情上,否则你会被数据淹没。数据是一种战略性资产,仅在以建设性的恰当方式进行使用并交付结果的时候才是有价值的。
好的问题能引出更好的答案
这就是为什么从对的问题开始着手是如此重要的原因。如果你清楚自己想要达成什么目标,那么你就可以想一想你需要知道答案的问题。比如,如果你的战略是想要扩大客户基础,你希望得到答案的问题可能会包括:“我们现在的客户是哪些人?”“我们最有价值的客户构成是怎样的?”以及“我们客户的长期价值是什么?”
当你清楚了自己需要被回答的那些问题之后,找到那些为了回答这些重要问题而所需的数据就容易得多了。比如,我曾和一家小型时尚零售公司合作,这家公司除了传统销售额数据之外没有其他任何数据。他们想要增加销售额,但没有可以帮助他们达成这个目标的智能数据可以分析。我和这家公司一起找出了他们想要知道答案的那些问题,包括:
有多少人实际上经过我们门店?
有多少人停下脚步望向橱窗?他们看了多久?又有多少人在这之后走入了门店?以及有多少人进行了购买?
我们所做的,就是在门店橱窗上安装了一部小型隐蔽设备,该设备能够在顾客进入门店时追踪到手机信号。每一个带着手机经过门店的人(今时今日,应该是几乎每个人都有手机吧)都会被该设备的传感器捕捉到,然后被计数,这就有了第一个问题的答案。传感器还会计算有多少人驻足观望橱窗并且观看了多久、有多少人在之后进入了门店,另外销售额数据将记录下哪些人真正进行了购买。通过将安装在橱窗中的传感器所收集的数据及交易数据结合起来,我们就能够计算转化率,并测试橱窗布置和各种商品展示之中,哪些切实提高了转化率。
这家时装零售商不仅通过聪明地将小型传统数据和非传统大数据进行结合的方法大幅增加了销售额,还利用这其中提供的洞见关闭了一家门店,从而大大节约了成本。传感器最终告诉他们,在那家门店开张前由一家市场研究将公司所报告的人流量数据是错误的,且真正的人流量不足以支持门店继续对外营业。
太多数据反而会蒙蔽真相
现今,真正成功的公司都在基于事实和数据驱动的真知灼见来做决策。无论你是否能够获得海量数据,如果你首先制定好策略,然后奔着结果找出你需要知道答案的问题,那么你就走在了提高表现和利用数据基本力量的康庄大道上。
现在,每一位经理人都有机会来使用数据去支持自己基于事实的决策制定。不过,如果没有正确的问题,所有这些“事实”都可以将真相蒙蔽。大量数据可能会产生大量答案,而这些答案有时候并不那么重要,所以,各家公司应该专注于业务中那些尚未得到解答的较大问题,并用大数据解决之。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22