京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据能帮助中国摆脱产业困境吗
首先,IT和电子产品将成为最大的获益者。这个道理显而易见,仅举一例:在美国出现了以获取、聚合和加工数据赢利的公司,它们掌握了产生数据的来源,其客户包括社交网站或电商的合作伙伴,及应用开发者合作伙伴。这类生意听起来像是从事开采和炼化的石油公司,但数据这种资源有所不同,它不仅不会消耗掉,而且越多人分享和使用,数据量越庞大越丰富。在这一点上,中国与美国还有不小的“数据鸿沟”,据IDC的统计,2010年,美国新储存的数据为3,500Petabytes ,而中国的仅为250Petabytes,不及美国的1/10 。
在零售业,无论是电子商务,还是传统门店,中国都有巨大的发展前景。中国的城市化和国内消费市场巨大,在大数据技术的帮助下,完全有可能在短时期内接近或赶上美国的水平。目前中国零售业的竞争“价格战”特点鲜明,而大数据技术可以帮助电商和传统零售商在市场营销、货品管理、运营、供应链,以及新商业模式方面提升和创新,改善消费者体验。
在医疗卫生领域,中国政府部门可以把大数据技术与医改结合起来,不仅能产生巨大的效益,而且能为应对人口老龄化做准备。据麦肯锡咨询公司的研究,大数据技术可能为美国的医疗保健业每年创造3,000亿美元的价值。
中国已经是全球最大的智能手机市场,这是唯一在大数据方面可能与美国发展非常接近的一个行业,移动终端产生海量的个人用户与位置结合起来的数据,从而为各种各样的服务、产品及全新的商业模式提供了巨大的发展空间。而且在移动领域,大数据技术可能帮助中国创业者产生不同于美国的商业模式。
大数据技术会极大提升中国的公共服务和管理的质量。政府掌握着海量的社会基础数据,并且公共服务与管理不断产生着新的海量数据。欧美政府已经开始用大数据技术改善政府的管理,甚至印度政府也开始尝试,最近推出了一个开放数据门户 (Data Portal India)Beta版,计划将政府各部门数据统一通过此网站公开发布,而且网站是开源的。在技术上通过开源与开放平台的方式,让公民更多参与社会的管理,能极大改善公众对政府服务的体验,但是,这个领域中国还处于政府透明化的早期阶段,政府的治理理念方面存在着不小的障碍。
由于数据是金融保险业的核心资产,金融保险业被公认为大数据技术最有发展潜力的行业。目前中国已经拥有世界上最大规模的银行业,不仅大公司,而且小的数据技术公司,在这个领域都有很大的发展前景,目前已经有一批新兴的公司在这个领域创业。
最重要的是大数据对于中国制造会带来什么影响。中国已经超过美国,成为全球第一制造大国,而中国制造目前正面临着困难。经历了劳动力密集型、资本密集型的发展,中国制造目前正在失去劳动力成本的优势,又面临着严重的产能过剩,以投资驱动的增长难以为继,而欧美正在酝酿一次以数据驱动的制造业的复兴。中国制造正处于转型升级的关键阶段,而大数据能帮助中国在制造业的各个环节提升,如在研发、设计、产品创新、供应链管理、生产过程(数字化和智能化),以及个性定制化的市场营销和售后服务等。
但是以上所有机会的前提,是大数据生态系统。数据资源只有开放和共享,才能产生商业价值。这让我想起了著名的梅特卡夫定律:网络的价值与连接到网络的人数的平方成正比。大数据是互联网时代的产物。观察一下硅谷那些最成功的高科技公司,无一不在 “追求拥有信息和建立思想的相互联系”,这种创造价值的方式,正在极大地影响甚至颠覆传统产业。
驾驭大数据要求新的智能,如人类智能与机器智能更深的融合,以及形成“集体智能”。大数据将消解对数据的集中控制和等级制的组织管理体系,就连蓝色巨人IBM 也越来越清晰地看到,经历大数据洗礼的标志性企业,可能是一个联盟网络,而不再那些单个的巨无霸企业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04