京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS统计基础-距离相关
该过程计算测量变量对或个案对之间相似性或不相似性(距离)的各种统计量。随后,这些相似性或距离测量可与其他过程(例如因子分析、聚类分析或多维尺度)一起使用,以帮助分析复杂的数据集。
示例。有可能基于某些特征(例如引擎大小、MPG 和马力)度量汽车对之间的相似性?通过计算汽车间的相似性,您可以了解到哪些汽车彼此相似,哪些汽车彼此不同。对更正式的分析,您可以考虑将分层聚类分析或多维尺度应用到相似性中,以探索基础结构。
获得距离矩阵
从菜单中选择:
分析> 相关> 距离...
距离:非相似性测量
从“度量”组中选择与数据类型(区间、计数或二值)相应的选项,然后,在下拉列表中选择与该数据类型相应的测量。根据数据类型,可用的测量有:
定距数据。欧氏距离、平方Euclidean 距离、Chebychev、块、Minkowski 或定制。
计数数据。卡方测量或phi 平方测量。
二分类数据。欧氏距离、平方Euclidean 距离、尺度差分、模式差分、方差、形状或Lance 和Williams。(在“存在”和“不存在”中输入值以指定哪两个值有意
义,“距离”将忽略其他所有值。)
“转换值”组允许您在计算近似性之前,为个案或变量标准化数据值。对二分类数据,这些转换不适用。可用的标准化方法有z 得分、范围–1 至1、范围0 至1、1 的最大量级、1 的均值和使标准差为1。
“转换测量”组允许您转换距离测量所生成的值。在计算了距离测量之后应用这些转换。可用的选项有绝对值、更改符号和重新调整到0–1 范围。
距离:相似性测量
从“度量”组中选择与数据类型(定距或二分类)相应的选项,然后,在下拉列表中选择与该数据类型相应的测量。根据数据类型,可用的测量有:
.定距数据。Pearson 相关或余弦。
.二分类数据。Russell 和Rao、简单匹配、Jaccard、切块、Rogers 和Tanimoto、Sokal 和Sneath 1、Sokal 和Sneath 2、Sokal 和Sneath 3、Kulczynski 1、Kulczynski 2、Sokal 和Sneath 4、Hamann、Lambda、Anderberg 的D、Yule 的Y、Yule 的Q、Ochiai、Sokal 和Sneath 5、phi 4 点相关或离差。(在“存在”和“不存在”中输入值以指定哪两个值有意义,“距离”将忽略其他所有值。)
“转换值”组允许您在计算近似性之前,为个案或变量标准化数据值。对二分类数据,这些转换不适用。可用的标准化方法有z 得分、范围–1 至1、范围0 至1、1 的最大量级、1 的均值和使标准差为1。
“转换测量”组允许您转换距离测量所生成的值。在计算了距离测量之后应用这些转换。可用的选项有绝对值、更改符号和重新调整到0–1 范围。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29