
如何学习基于SPSS Modeler的数据挖掘
企业想要在竞争激烈的市场中胜出,决策的速度和反应的效率尤为重要。根据调查显示,75%的企业在面临拟定策略时,常常无法获得实时且有根据的决策信息。什么样的数据、要透过什么样的方法,才能快速且实时的转变成决策时有用的信息,是现代企业所面临最迫切性的问题。数据挖掘(Data Mining)无疑是解决这些问题最有效的途径。
一、数据挖掘定义
从现有的大量数据中,撷取不明显、之前未知、可能有用的知识。
William Frawley & Gregory Piatetsky Shapiro, 1991
数据挖掘目的:建立起决策模型,根据过去的行动来预测未来的行为
二、数据挖掘流程(CRISP-DM)
数据挖掘不是无规律可循的,在进行数据挖掘勘探工作中,我们一般遵循CRISP-DM流程。包含商业理解-数据理解-数据前处理-数据建模-模型评估-模型发布六个步骤。整个流程围绕数据为核心,其中商业理解是产生商业价值的关键步骤,数据前处理是耗时最多的步骤,建模是关键步骤。
当然,数据挖掘的流程不是至上而下的,而是循环往复的过程,比如模型评估的结果差的情况下我们可能需要返回商业和数据理解部分。
三、主流数据挖掘工具
目前主流的数据挖掘工具分开源免费和收费两大类,其中收费软件以SAS EM和IBM SPSS Modeler、Microsoft Sql Server为代表,具有权威易用、解决方案成熟等特点。开源类软件多需要编程实现,比如Python、R。具有灵活多元、可扩展性强等特点。
四、案例展示:医疗业之临床路径预测
1.商业理解
某医院搜集了200个患有同种类型疾病病人的资料。虽然得到的是同种疾病,但是不同的病人、不同的状况,需要采取不同的用药和治疗方式。我们想透过数据挖掘的方法了解到对于不同特征(血压、胆固醇、钠钾含量)的病人给予哪种药物很适合治疗康复。
2.数据理解
DRUG1N.CSV文件,一共包含7个变量,200个观测值。目标属性为用药类型。同时选取了可能有用的解释字段,包含年龄、性别、血压、胆固醇、钠含量、钾含量。
3.数据建模
①数据探索
了解各变量对目标变量的影响,类别型变量使用条形分布图,数值型变量使用直方图。
例如通过上图我们可以看出血压在影响用药上的分布,血压高中低都会有DrugY用药,而DrugA和DrugB只会在高血压的时候出现,DrugX只会在低血压和正常的时候出现,DrugC只出现在低血压,说明血压对用药的影响在目标字段上比较明显。
通过对年龄字段的探索,我们发现DrugY和DrugX、DrugC在各个年龄段都有分布,而DrugA只出现在大概50岁以下,DrugB只出现在年龄在50岁以上。
② 决策树建模
在这里,我们使用决策树建模的方法,决策树是一种非常常用的分类预测的方法。在IBM SPSS Modeler中我们只需要调用Modelering-C5.0进行建模。
可以看出,这是一个五层的决策树,通过决策树模型运行结果,我们即可对后续的样本进行预测。
4.模型评估
接入Analysis分析节点,运行之后可以发现模型准确率为96.5%。当然,这个是使用原数据集进行建模,实际建模过程中我们还需要用到训练集和测试集拆分的方法来进行建模和评估。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14