
如何学习基于SPSS Modeler的数据挖掘
企业想要在竞争激烈的市场中胜出,决策的速度和反应的效率尤为重要。根据调查显示,75%的企业在面临拟定策略时,常常无法获得实时且有根据的决策信息。什么样的数据、要透过什么样的方法,才能快速且实时的转变成决策时有用的信息,是现代企业所面临最迫切性的问题。数据挖掘(Data Mining)无疑是解决这些问题最有效的途径。
一、数据挖掘定义
从现有的大量数据中,撷取不明显、之前未知、可能有用的知识。
William Frawley & Gregory Piatetsky Shapiro, 1991
数据挖掘目的:建立起决策模型,根据过去的行动来预测未来的行为
二、数据挖掘流程(CRISP-DM)
数据挖掘不是无规律可循的,在进行数据挖掘勘探工作中,我们一般遵循CRISP-DM流程。包含商业理解-数据理解-数据前处理-数据建模-模型评估-模型发布六个步骤。整个流程围绕数据为核心,其中商业理解是产生商业价值的关键步骤,数据前处理是耗时最多的步骤,建模是关键步骤。
当然,数据挖掘的流程不是至上而下的,而是循环往复的过程,比如模型评估的结果差的情况下我们可能需要返回商业和数据理解部分。
三、主流数据挖掘工具
目前主流的数据挖掘工具分开源免费和收费两大类,其中收费软件以SAS EM和IBM SPSS Modeler、Microsoft Sql Server为代表,具有权威易用、解决方案成熟等特点。开源类软件多需要编程实现,比如Python、R。具有灵活多元、可扩展性强等特点。
四、案例展示:医疗业之临床路径预测
1.商业理解
某医院搜集了200个患有同种类型疾病病人的资料。虽然得到的是同种疾病,但是不同的病人、不同的状况,需要采取不同的用药和治疗方式。我们想透过数据挖掘的方法了解到对于不同特征(血压、胆固醇、钠钾含量)的病人给予哪种药物很适合治疗康复。
2.数据理解
DRUG1N.CSV文件,一共包含7个变量,200个观测值。目标属性为用药类型。同时选取了可能有用的解释字段,包含年龄、性别、血压、胆固醇、钠含量、钾含量。
3.数据建模
①数据探索
了解各变量对目标变量的影响,类别型变量使用条形分布图,数值型变量使用直方图。
例如通过上图我们可以看出血压在影响用药上的分布,血压高中低都会有DrugY用药,而DrugA和DrugB只会在高血压的时候出现,DrugX只会在低血压和正常的时候出现,DrugC只出现在低血压,说明血压对用药的影响在目标字段上比较明显。
通过对年龄字段的探索,我们发现DrugY和DrugX、DrugC在各个年龄段都有分布,而DrugA只出现在大概50岁以下,DrugB只出现在年龄在50岁以上。
② 决策树建模
在这里,我们使用决策树建模的方法,决策树是一种非常常用的分类预测的方法。在IBM SPSS Modeler中我们只需要调用Modelering-C5.0进行建模。
可以看出,这是一个五层的决策树,通过决策树模型运行结果,我们即可对后续的样本进行预测。
4.模型评估
接入Analysis分析节点,运行之后可以发现模型准确率为96.5%。当然,这个是使用原数据集进行建模,实际建模过程中我们还需要用到训练集和测试集拆分的方法来进行建模和评估。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28