京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据能否帮助你找到下一任首席执行官
我已经就数据和分析如何改变招聘版图的问题进行了广泛的讨论。到目前为止,注意力大多聚焦于填补中低层职位空缺,例如施乐(Xerox)为呼叫中心职位寻找最佳候选人所做的工作。但填补首席执行官、首席财务官、首席营销官等C级高管以及其他高层职位空缺呢?
这些人将指引公司的发展方向。他们责任重大,作为回报,相当多的公司利润落入他们的腰包。如果在这一级别上作出错误的人事任命,发生灾难的可能性将非常明显。因此,填补这些职位空缺应该尽量减少猜测的成分。
大数据猎头
在本文中,我将着眼于猎头公司光辉国际(Korn Ferry)。该公司已经采取多项措施,确保C级高管的招聘工作深深植根于数据和分析。光辉国际擅长为最高层职位寻找候选人,拥有近50年的从业经验。在近几年里,该公司开始将大数据分析应用于他们获得的大量数据,以便为最好的职位寻找最合适的人选。
这使该公司可以详细描绘出在顶级职位上取得成功所需的各种能力、优点和经验。该公司与南加州大学的数据科学家合作,开始打造基于分析的人员配置平台(他们称之为光辉国际四维领导力和人才,简称KF4D)。
光辉国际全球人才评估和分析副总裁戴纳·兰迪斯(Dana Landis)对我说:“最大的发现在于,有一些普遍性因素在发挥作用,数量超过我们的预料。”数据揭示了一些强大的模式,突显了C级职位所需特点和品质的重要性,包括愿意终生学习,拥有高水平的情商(例如换位思考)、沟通能力和风险承受力。”
经验有多重要?
除了特点和能力之外,经验显然是在很多岗位上取得成功的必备条件。大数据分析也适用于此。比较分析可以显示出一个人在先前岗位上学会了哪些技能,以及在职务晋升时他们可能将需要哪些技能。
虽然光辉国际在评估高层职位候选人的过程中收集数据已有近50年的历史,但为了继续收集真正的大数据,该公司必须使数据收集过程自动化,以便获得大量的所需样本。
这意味着在可控条件下,将纷繁复杂、常常耗时好几天的评估过程压缩成耗时45分钟、只要有网络连接就可以随时随地完成的在线测试。兰迪斯对我说:“说起大数据,这涉及到评估全球几百万人,因此需要自我评估。”
当然,自我评估会使人们担心候选人可能会试图“欺骗系统”,提供他们认为雇主希望看到的答案。但问题中所包含的心理特点可以缓和这种担忧,比如让候选人对他们可能拥有的、看似同等重要的品质进行优先排序。
你是适合的人选吗?
系统评估的另一个重要因素是候选人有多么适合公司的文化。光辉国际研究分析部门光辉国际研究所的首席营销官和总裁迈克·迪斯特法诺(Mike Distefano)对我说:“我总是讲,人们因为他们的知识而受聘,因为他们的本性而被解雇。因此,我们花费大量时间来确保那个人适合公司文化。”
应聘者可以选择是对公司文化感到满意还是想要改变它。如果是前者,那么系统会认为他可能适合公司文化,如果是后者,那么系统会认为他可能是改变的代理人。
但在领导力方面,是否有一种品质(或者说特征)凌驾于其他所有品质之上?迪斯特法诺给出了肯定的答案。“如果我必须选择一种品质作为个人成功的指示器,那么它将是机敏。”数据分析显示,机敏的候选人往往在实现利润增长方面表现优异。因此,他的建议是“雇佣机敏者,但要确保他适合公司文化”。
如果没有得到庞大数据集(也就是大数据)支撑的预测模型和统计分析,那么这种对招聘C级高管的分析方法不可能实现。光辉国际使用亚马逊(Amazon)的AWS弹性计算云(Elastic Compute Cloud,简称EC2)和简单存储服务(Simple Storage Service,简称S3)来进行分布式存储和处理。算法由光辉国际内部开发,使用了R和Python等开源技术。
任命新首席执行官无疑是企业面临的最大挑战之一。如果没有进行可靠的数据分析,大多数公司不会就提供哪种产品或服务做出决定。现在是否是时候把同样深入的分析方法应用于顶级职位的招聘工作?通过在比较分析的支持下利用可量化数据评估顶级人才,企业能够确保填补领导职位空缺的人最有可能带领公司和公司里的每个人发展壮大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09