
SPSS中的T检验
1.单样本T检验(One-Sample T Test)
单样本T检验主要用于样本均数和已知总体均数的比较,还可以计算相应的描述性统计量及样本均数和总体均数之差的95%可信区间。
如果Sig(P)>0.05,差异没有显著性,可以认为抽样的均数与总体均数相同;0.01<Sig(P)<0.05,差异较显著,可以认为抽样的均数与总体均数不相同;Sig(P)<0.01,差异非常显著,可以认为抽样的均数与总体不相同。
如果求得的可信区间没有包括0,亦可说明两者间的差异有显著性意义。
2.配对样本T检验(Paired-Samples T Test)
本过程用于配对计量资料的比较,检验配对样本差值的总体均数与0的差异有无显著性差异,以及配对样本是否相关。结果输出以双侧概率及95%可信区间表示。
如积矩相关系数r=0.782(P=0.008),可以推断,该变量在处理前后正相关。
如配对t检验,t=5.273,v=9,P=0.001(双侧), 差异有显著性意义。
如差值的95%可信区间不包括0,同样说明差异有显著性意义。
1.独立样本T检验(Independent-Samples T Test)
独立样本T检验即两样本均数比较的t检验(或两样本t检验),用来检验两个独立样本的总体均数是否有显著性差异。
以两种药(甲,乙)的疗效为例,先计算两种疗效的差值。差值为反应变量(Test Variable),药物为分组变量(Grouping Variable)。
结果分析:Levene's Test for Equality of Variences:Levene 方差齐性检验,先求得各观察值与其所在组的均值之差的绝对值,然后将绝对值按分组变量做方差分析,所得F值即Leven F统计量。若P>0.05,可认为方差齐次性。该方法在非正态分布数据情形下较稳健。
Equal variances assumed:方差齐同条件下的t检验结果。如果P>0.05,差异无显著性意义,认为甲乙两药的疗效差异无显著性意义。
Equal variances assumed:方差不齐条件下的t检验结果。
2.单向方差分析(One-way ANOVA)
单向方差分析过程用于完全随机设计资料的多个样本均数比较和样本均数间的多重比较,即可进行多个处理组与一个对照组的比较。
如分析某湖中不同季节中氯化物含量的变化。季节为分类变量(Factor),氯化物为因变量(Dependent list).Post Hoc...:各组均数的多重比较。
结果分析:方差分析(Anova表),如果P<0.05,差异显著,认为不同季节中的湖水中的氯化物含量不同。
LSD检验结果:可以看出来春夏秋冬四季之间氯化物含量差异是由有显著性变化。
SNK检验和LSD检验一样可以通过P值看出来各个季节氯化物的含量是否有显著性变化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10