
大数据的小算盘
这两年大数据市场发展得红红火火,业界普遍看好其应用前景。精英们,专家们每每提及大数据,必然带上数据经济、物联网,人工智能等一长串金光闪耀的名词作为注脚,常把我这种小从业者侃的热血沸腾,大有“世界是我们的,就是我们的,最终还是我们的”的感觉。不过热血总是会平复的,冷静下来想想,能够在大数据浪潮中兴风作浪的只是少数有资源、有技术、有市场的巨头们,对于面临生存发展压力的众多小从业者来说,多美好的未来都太遥远,与其垂涎行业巨头们的大布局,不如静下心打打自己的小算盘。
跟随行业的脚步,向前迈进
大数据市场的快速发展会创造很多的市场机会,但也带来巨大的风险。大企业,乃至行业巨头都难保自己不会衰落,更何况对市场风险抵御能力更弱的小从业者。认清并跟随行业发展大趋势,无疑能够大大提升小从业者们的生存和发展能力。
随着在各行业中不断应用,大数据技术得到广泛的认可,进入了理性发展阶段。16年以来,各种社会组织对大数据的态度发生了改变,从一种潜力巨大的新技术变为帮助自己适应互联网时代的强力工具,大数据市场相应的出现了新动向:
业务需要驱动大数据建设。随着对大数据了解的不断加深,市场关注点变为大数据的实际应用价值,客户更加关心如何利用大数据,而不再是如何建设。大数据企业使用数据、挖掘数据的能力对其发展市场越来越重要。单纯技术驱动的大数据企业,特别是专注于大数据平台建设的,将会在在市场变化中遇到更多的挑战。
全量数据分析。身处复杂,异构环境中的企业不再希望仅为一个数据源(Hadoop)采用孤立的BI访问点。他们需要的答案被埋没在一大堆数据源中,从记录系统到云端,再到来自Hadoop和非Hadoop源的结构化和非结构化数据。企业会更加趋向于将自己的所有数据纳入数据管理分析范围。不依赖于数据源的平台将会受到欢迎,而专为Hadoop而设计的平台和未能跨应用部署的平台将受到冷遇。数据湖概念的兴起就是一个明显的佐证。
基于大数据的机器学习。随着大数据分析能力不断增强,越来越多的企业开始投入于机器学习,并从中获益。企业可以通过机器学习算法识别潜在客户,或识别即将流失的客户,或识别营销推广中作弊的渠道,或及时发现关键KPI下跌的原因等。
结合自身情况和行业发展,不断调整,找到最适合自己的发展方向和策略,小从业者也可以顺风顺水,说不定有一天就站到大数据的风口浪尖。
把握发展的契机,阔步前行
大有大的难处,小有小的优点。相比于行业巨头和大企业,灵活快速的满足客户要求是小从业者的最大优势。像其他新技术一样,大数据在落地的过程中会遇到很多的问题,这是新兴市场给所有从业者的礼物,也是小从业者快速发展的契机。
大数据真正在各行业落地的时间并不长,以往企业更多的是在验证技术可行性,直到16年才开始考虑围绕大数据构建IT体系,一些比较普遍的问题受到了各方面的关注:
打通数据孤岛仍是企业关注重点。在很多企业尤其是大型企业中,数据常常散落在不同部门,而且这些数据存储于不同的数据仓库,不同部门的数据技术也有可能不同,导致企业内部数据无法打通。从自由模式的JSON到嵌入式的数据库(如关系数据库和非关系数据库),到非平面数据(如Avro,Parquet,XML),数据格式正在成倍增长,连接器变得至关重要,它将不同格式的数据变成统一的表达,让不同格式的数据之间实现互通。为零散的、不同的资源提供即时连接的能力,将成为评估一个大数据系统能力的重要方面。
“自助服务”工具。企业数据用户(往往是业务、产品、营销负责人等非大数据专业人士)在实际运用大数据的时候,更关注的是大数据的产品在哪些方面可以直接帮助改善自身业务,不需要关注大数据产品内部各个环节的技术细节。大数据在落地的过程中,需要解决大数据能力产品化的问题,帮助非专业人员使用,比如:自助服务的大数据分析工具、数据管理工具等。我们将看到更多企业意识到自助工具的重要性,以及对其迫切的需求。
智能BI。智能化涵盖的内容很多,包括人工智能等等,但对于资源、技术都比较匮乏的大多数小从业者而言,考虑企业用户对BI系统的智能化期待更具现实意义。企业最希望利用大数据技术实现精细化运营,发现新的发展和提升契机。这将推进智能BI的发展,帮助企业更好地理解和满足客户需求和潜在需求,更好地应用在业务运营智能监控、精细化企业运营、客户生命周期管理、精细化营销、经营分析和战略分析等方面。
大数据在各行业的落实,是数据技术同行业知识的结合,是一个长期的持续提升过程。大数据企业需要不断的观察、分析市场动态,保持敏锐的市场触觉,不断调整自身抓住每个机会壮大自己。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27