京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下数学建模还有作用吗
一直以来很想回答这个问题。只是后来发现我想说的很多回答者已经回答过了。今天看了「拒绝用QQ邮箱发应聘邮件的求职者是否合理?」的有关讨论,突然发现,在这个问题里面,可以把我的「没处答的一些话」写下来。
我曾经有一次讨论过有关机器学习的事情,我很相信这样的方法可以为我们「解决」某些问题提供帮助,但是他对这些方法很不喜欢,因为「解决」问题跟「理解」问题是两码事。大数据时代的各种统计学习方法可以为我们解决许多问题,但我们却不知道为什么会这样。
有了大数据,我们直接从数据里面就得出来很多奇妙的结论。例如杨宣指出的,在「不通过」这个分类之下,qq 邮箱是概率排名前五的强特征。这就是「大数据时代」(或者其它各种各样类型的「实证研究」)为我们解决的一个问题——至少 HR 们筛掉 qq 邮箱在统计的意义上是有些理性依据的。
但是是不是有什么东西被我们错过了呢?
今年暑假的某一天,我听一个我很尊重的老师批评了目前在做复杂系统有关问题时,主要基于统计的那些研究者,他们做出来的一些东西。我们都知道现在做这些问题的研究者可以发表很多很好的文章,但是这些文章缺少了某些东西。
以往,如果我写了一篇论文,发现某个结论,并且在文中提出得出这个结论可能的一个原因,甚至提出来一个数学模型,这个模型可以解释我从数据分析中得到的那个结论。要是把我写的这篇文章投稿到比较好的期刊,审稿人必然会提意见——你提出了一种产生这个结论的原因,可是你怎样排除掉其它的原因呢?如果你不能排除掉其它的因素的影响,那我们很遗憾只能拒绝掉你的文章了。
在大数据时代,审稿人们还能以此为理由拒绝掉别人的文章吗?这些数据这么珍贵,甚至有的是从运营商、航空公司、网站和志愿者处花费了金钱和时间才得到的,提出这样的一个解释就已经很好了……可是我们很可能会距离理解各种问题越来越远。在大数据时代,通过各种统计的方法,我们可以得到许多有意思的结论,但是这些结论不能让我们心安。就像「用 qq 邮箱的求职者很可能有着较低的简历质量」也可能会是一个从大数据分析得到的结果,可是我们不会知道为什么会这样。公开这些结论,甚至可能招致他人的批评。每个人可能有不同的看法,也会自己提出对这个问题的解释,即每个人都会对这个结论提出自己的「模型」,并把自己的「模型」跟这个结论等价起来。如果「模型」不能排除其它因素的影响,那么你可以提出你的理论来解释这个问题,而我也可以提出我的模型来解释这个结论,我们最终会无法说服他人。遗憾的是,正因为我们的结论来自大数据,很多时候我们很难再找出「对照实验」的那些数据了,杂志社没有办法说「如果你能排除掉其它的因素的影响,我们就发表你的文章」。我们很可能会距离「为什么」越来越远。
而如果把「大数据」和「数学模型」对立起来,则这里所说的「模型」便是另一码事了。这里的「模型」与「机制」「假设」「简化」等等更接近。有了「模型」,我们就可以从「纯粹理性」而非「实践理性」的高度让你心安。就像每个 HR 都可以提出无数个讨厌 qq 邮箱求职者的理由,只可惜,这些模型都是你个人的角度,大家攻击起来实在容易。我们或许会越来越难摒弃掉这些偏见,因为没有一个可以让大家都相信的「理论」(或者「模型」)。我们只知道结论。
这时候,如果你是天才的建模者,提出一个能被大家公认的模型,并排除掉其它也可能造成这一现象的干扰因素,那就是真正的大神了。我比较悲观,因为我自己也会在实用的结论面前满足。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05