
大数据时代下数学建模还有作用吗
一直以来很想回答这个问题。只是后来发现我想说的很多回答者已经回答过了。今天看了「拒绝用QQ邮箱发应聘邮件的求职者是否合理?」的有关讨论,突然发现,在这个问题里面,可以把我的「没处答的一些话」写下来。
我曾经有一次讨论过有关机器学习的事情,我很相信这样的方法可以为我们「解决」某些问题提供帮助,但是他对这些方法很不喜欢,因为「解决」问题跟「理解」问题是两码事。大数据时代的各种统计学习方法可以为我们解决许多问题,但我们却不知道为什么会这样。
有了大数据,我们直接从数据里面就得出来很多奇妙的结论。例如杨宣指出的,在「不通过」这个分类之下,qq 邮箱是概率排名前五的强特征。这就是「大数据时代」(或者其它各种各样类型的「实证研究」)为我们解决的一个问题——至少 HR 们筛掉 qq 邮箱在统计的意义上是有些理性依据的。
但是是不是有什么东西被我们错过了呢?
今年暑假的某一天,我听一个我很尊重的老师批评了目前在做复杂系统有关问题时,主要基于统计的那些研究者,他们做出来的一些东西。我们都知道现在做这些问题的研究者可以发表很多很好的文章,但是这些文章缺少了某些东西。
以往,如果我写了一篇论文,发现某个结论,并且在文中提出得出这个结论可能的一个原因,甚至提出来一个数学模型,这个模型可以解释我从数据分析中得到的那个结论。要是把我写的这篇文章投稿到比较好的期刊,审稿人必然会提意见——你提出了一种产生这个结论的原因,可是你怎样排除掉其它的原因呢?如果你不能排除掉其它的因素的影响,那我们很遗憾只能拒绝掉你的文章了。
在大数据时代,审稿人们还能以此为理由拒绝掉别人的文章吗?这些数据这么珍贵,甚至有的是从运营商、航空公司、网站和志愿者处花费了金钱和时间才得到的,提出这样的一个解释就已经很好了……可是我们很可能会距离理解各种问题越来越远。在大数据时代,通过各种统计的方法,我们可以得到许多有意思的结论,但是这些结论不能让我们心安。就像「用 qq 邮箱的求职者很可能有着较低的简历质量」也可能会是一个从大数据分析得到的结果,可是我们不会知道为什么会这样。公开这些结论,甚至可能招致他人的批评。每个人可能有不同的看法,也会自己提出对这个问题的解释,即每个人都会对这个结论提出自己的「模型」,并把自己的「模型」跟这个结论等价起来。如果「模型」不能排除其它因素的影响,那么你可以提出你的理论来解释这个问题,而我也可以提出我的模型来解释这个结论,我们最终会无法说服他人。遗憾的是,正因为我们的结论来自大数据,很多时候我们很难再找出「对照实验」的那些数据了,杂志社没有办法说「如果你能排除掉其它的因素的影响,我们就发表你的文章」。我们很可能会距离「为什么」越来越远。
而如果把「大数据」和「数学模型」对立起来,则这里所说的「模型」便是另一码事了。这里的「模型」与「机制」「假设」「简化」等等更接近。有了「模型」,我们就可以从「纯粹理性」而非「实践理性」的高度让你心安。就像每个 HR 都可以提出无数个讨厌 qq 邮箱求职者的理由,只可惜,这些模型都是你个人的角度,大家攻击起来实在容易。我们或许会越来越难摒弃掉这些偏见,因为没有一个可以让大家都相信的「理论」(或者「模型」)。我们只知道结论。
这时候,如果你是天才的建模者,提出一个能被大家公认的模型,并排除掉其它也可能造成这一现象的干扰因素,那就是真正的大神了。我比较悲观,因为我自己也会在实用的结论面前满足。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09