京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何使用PROC MEANS和PROC UNIVARIATE进行统计描述
描述性统计分析是对一组数据的各个特征进行分析,以便于描述测量样本的各种特征及其所代表的总体特征。描述性统计分析的内容很多,常用的有平均数、标准差、中位数、频数分布、正态或偏态程度等。这些分析是复杂统计分析的基础。本文主要介绍如何运用SAS中的过程步进行描述性统计量的计算。
PROC MEANS
运用PROC MEANS可以计算数值型变量的均值、中位数、众数等描述性统计量。其基本用法为:
PROC MEANSDATA=数据集选项;
VAR变量1 变量2...;
RUN;
其中,如忽略VAR语句则分析数据集中所有数值型变量。另外,选项可以用来指定统计量的输出格式,不填写选项系统则默认输出频数、均值、标准差、最大值和最小值。输出指定统计量列表如下:
PROC UNIVARIATE
PROC UNIVARIATE和PROC MEANS一样可以计算数值型变量的均值、中位数、众数等描述性统计量。但相比PROC MEANS,其优势在于可以绘制直方图,从而更加直观地给出变量的分布情况。其基本用法为:
PROC UNIVARIATEDATA=数据集;
VAR变量;
BY 变量;
CLASS 变量;
HISTOGRAM变量选项;
QQPLOT 变量 选项;
PROBPLOT变量 选项;
RUN;
其中,如忽略VAR语句则分析数据集中所有数值型变量。BY与CLASS的用法基本相同,用于指定分组的变量。HISTOGRAM语句可以针对指定变量绘制直方图。QQPLOT语句用于控制Q-Q图的绘制。PROBPLOT 语句可以指定作出概率图,比较数据是否服从某已知分布,如正态分布、二项分布、泊松分布等。
示例: PROC MEANS
示例: PROC UNIVARIATE
从输出结果可以看出,PROC MEANS帮助用户选择性的输出所需的统计量,而PROC UNIVARIATE 则输出了几乎所有分析所需的统计量,同时,还可以选择性的输出一些分析所需的统计图(如P-P,Q-Q,直方图),并进行正态性检验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12