京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS在DATA步中调用PROC步
给大家介绍一种方法,可以在DATA步中调用PROC过程,这样就可以在DATA步中对PROC产生的结果进行操作。
具体如何实现?
首先肯定不是直接在DATA步中写PROC,有些人可能会说用CALL EXECUTE,其实不然。CALL EXECUTE是在DATA步运行之后才调用。
在这里给大家介绍RUN_MACRO这个函数,通过该函数就可实现在DATA步中调用PROC,或者是另一个DATA步。
顾名思义,该函数就是用来调用macro的,但它有它的独特之处:不能在DATA步中使用该函数,只能在FCMP过程中使用(自定义函数中使用)。
因此要实现在DATA步中调用PROC,需要三个步骤:
1.定义一个MACRO,其内容就是一个PROC过程;
2.通过FMCP创建自定义函数,调用上面定义的MACRO;
3.在DATA步中调用自定义函数,即间接调用PROC过程;
下面用一个例子来说明:
创建宏(该宏是利用PROC SQL创建一个数据集,包含一个变量的非重复值)
%macro distinct_values;
%let input_table = %sysfunc(dequote(&input_table));
%let column = %sysfunc(dequote(&column));
%let output_table = %sysfunc(dequote(&output_table));
proc sql;
create table &output_table as
select distinct &column
from &input_table;
%mend;
创建自定义函数(在自定义函数中调用上面定义的宏)
proc fcmp outlib=work.funcs.sql;
function get_distinct_values(input_table $, column $, output_table $);
rc = run_macro('distinct_values', input_table, column, output_table);
return (rc);
endsub;
run;
在DATA步中调用
options cmplib = work.funcs;
data _null_;
rc = get_distinct_values('sashelp.shoes', 'region', 'work.regions');
id=open('work.regions');
if id then nobs=attrn(id,'NOBS');
put nobs;
run;
通过这种方式就可在DATA中调用PROC,从而使用PROC生成的结果。在上面的例子中,最后的DATA步调用PROC生成了数据集WORK.REGIONS,
然后通过OPEN函数打开该数据集,获取到该数据集的观测数。当然你可以干其他的事情。
重点在于:RUN_MACRO调用宏后,会一直等待宏执行完毕后才返回。因此紧接着get_distinct_values自定义函数后就可以使用宏产生的数据。
如果使用CALL EXECUTE调用宏,是在DATA步执行完之后,才调用宏,实际上就是在DATA步之后增加了宏的调用。
注:虽然在第三步调用get_distinct_values之后就可以使用该数据,但不能使用SET WORK.REGIONS; 为什么呢?这是因为SET语句的运行机制决定的。
在程序编译阶段,如果有SET语句,就会将SET的数据集打开,但此时程序还未执行,数据集根本没有生成,因此就会报错,提示数据集不存在。
所以要使用OPEN函数,来对该数据集进行操作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01