
DI是人类通向AI的必经之路
早在1980年,未来学家托夫勒在《第三次浪潮》中就提到“大数据”一词。而37年后的今天,普通人对于数据依然是云里雾里。但这并不妨碍人类对数据的追寻,越来越多的人开始相信,数据之于人类的变革正在进行,并且远比想象中的迅猛。数据应用的终点是AI(人工智能)吗?我们会因为机器人失业吗?这样的竞争压力又是否会催生科幻小说里的新人类?
2017UBDC全域大数据峰会,将“DI的力量”作为主题,DI即数据智能,并首次给出答案:DI是人类通向AI的必经之路。大会将对数据的无限想象与现实应用紧密结合,从高处着眼、从小处着手,聚焦当下的数据价值,探讨数据赋能下的新零售、新营销、新互联网业务、新金融风控,并为你打开关于数据的谜团。
下面,抢先剧透关于DI的三个问题:
DI是什么?
DI:Data Intelligence,即数据智能。
DI(数据智能)以数据为基础,不局限于对数据本身的统计和分析,而是运用先进的研究模型对其潜在价值的深入挖掘。典型场景包括:推广的智能策略服务、用户体验的智能调优、以线上智能分析赋能线下等。
我们不光知其然还要知其所以然,数据不是结果,而是策略,最终再通过恰当的形式得以执行和调优。数据服务由单调的关联展示,走向自主的学习预判,越来越智能。相信DI+各行各业,将会产生更振奋和深远的影响。
数据演进的三个阶段
1BI商业智能阶段(过去)
数据驱动业务,商业模式以B2B为主,数据的能力主要集中在对业务的监测,这时候大量的人工成本不可避免,分析人员的水平、能力直接导致决策的可靠性。典型产品包括:各种统计工具、销售管理系统、运营管理系统等。
2DI数据智能阶段(现在)
数据驱动智能,商业模式以B2B2C、B2B为主,数据能力重点在“因果分析”,即探究为什么。对业务的全方位数据监测成为可能后,分析人员成为瓶颈,由数据智能替代人肉分析,完成策略、业务、数据高效自动循环。目前,以【友盟+】的U-Dplus等新型工具为代表,不仅实现传统统计功能,还将垂直业务的分析方法纳入其中,大大降低了使用门槛。
从宏观层面,DI是人类通向AI的必经之路,大量思想、经验、方法论散落各个行业专家的脑中,这已经成为制约发展的严重问题。我们解决了业务的数据化后,就要解决知识的信息化,即数据智能。
只有经历了DI时代,我们才有可能迎来AI时代!
3AI人工智能阶段(未来)
AI核心是智能的自我进化,将是人类的一次飞跃;商业模式将是B2C、C2C。
在DI的阶段,我们将知识信息化,赋予机器;在AI时代,机器将脱离现有数据的束缚,像人一样,拥有自主思考、学习、判断、进化的能力。
大胆的想象一下,如果说几百万年前,人类从猿人逐渐进化成现代人,是人类进化史的第一次飞跃;那么,下一轮进化将是人工智能,从对人的意识、思维的模拟,到像人那样思考,甚至超过人的智能。
AI是一套庞大系统,不仅局限在交互及终端中,我们造出了“人”,还要赋予其“灵魂”,使其具备自主的思维逻辑。由此,机器学习是AI的核心,DI是使机器学习成为可能。
DI落地的重要条件
1首先是数据的全方位采集
人人、物物都可以生产数据。但是,从当下看,只有少数的互联网科技公司实现了全业务数据化,大量传统企业还停留在非数据化、或部分数据化时代。仅从数据的采集与管理层面,就有很大的技术门槛。比如,在【友盟+】,每天采集的数据就有280亿之多,如何将这些数据加工-处理-挖掘-输出,是需要数据、算法、云能力、商业应用等多种能力的融合。
现在业内普遍的做法,是建立数据处理中心,可以理解为数据加工厂。【友盟+】认为,面向DI、AI的数据处理平台,应该是一体化、标准化、开放性、高安全、秒级处理、高弹性的数据智能平台。它能帮助企业处理现有的数据业务,应对复杂多变的市场环境,在强调标准化的同时,兼具灵活性与开放性,并且能直接与业务对接,形成从数据采集到应用的闭环。
2其次是知识的信息化
人的需求,从未改变;人即商业,商业即人。最核心是认知、认可、行动。把散落的思想、经验、方法论有机组织起来,用数据来驱动,用机器来提升决策效率,快速试错、反复迭代。结合现有的商业模式,我们可以从对人的洞察、对人的营销、对人的行动策略谈起。
由此,2017UBDC峰会,特别策划三大分论坛:数据化运营专场、广告营销专场、新零售专场,全球的顶级企业将讲述基于DI数据智能的新玩法、新观点。
在现阶段,数据应用的重点是帮助企业重塑人货场、业务链,深入了解消费者,让大量的数据运转出商业价值,成为社会经济的基础智能支撑。而在可以预见的将来,数据将超越今天的智能终端,成为每个人身体和思想的延伸,创造“你”的数据价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10