
DI是人类通向AI的必经之路
早在1980年,未来学家托夫勒在《第三次浪潮》中就提到“大数据”一词。而37年后的今天,普通人对于数据依然是云里雾里。但这并不妨碍人类对数据的追寻,越来越多的人开始相信,数据之于人类的变革正在进行,并且远比想象中的迅猛。数据应用的终点是AI(人工智能)吗?我们会因为机器人失业吗?这样的竞争压力又是否会催生科幻小说里的新人类?
2017UBDC全域大数据峰会,将“DI的力量”作为主题,DI即数据智能,并首次给出答案:DI是人类通向AI的必经之路。大会将对数据的无限想象与现实应用紧密结合,从高处着眼、从小处着手,聚焦当下的数据价值,探讨数据赋能下的新零售、新营销、新互联网业务、新金融风控,并为你打开关于数据的谜团。
下面,抢先剧透关于DI的三个问题:
DI是什么?
DI:Data Intelligence,即数据智能。
DI(数据智能)以数据为基础,不局限于对数据本身的统计和分析,而是运用先进的研究模型对其潜在价值的深入挖掘。典型场景包括:推广的智能策略服务、用户体验的智能调优、以线上智能分析赋能线下等。
我们不光知其然还要知其所以然,数据不是结果,而是策略,最终再通过恰当的形式得以执行和调优。数据服务由单调的关联展示,走向自主的学习预判,越来越智能。相信DI+各行各业,将会产生更振奋和深远的影响。
数据演进的三个阶段
1BI商业智能阶段(过去)
数据驱动业务,商业模式以B2B为主,数据的能力主要集中在对业务的监测,这时候大量的人工成本不可避免,分析人员的水平、能力直接导致决策的可靠性。典型产品包括:各种统计工具、销售管理系统、运营管理系统等。
2DI数据智能阶段(现在)
数据驱动智能,商业模式以B2B2C、B2B为主,数据能力重点在“因果分析”,即探究为什么。对业务的全方位数据监测成为可能后,分析人员成为瓶颈,由数据智能替代人肉分析,完成策略、业务、数据高效自动循环。目前,以【友盟+】的U-Dplus等新型工具为代表,不仅实现传统统计功能,还将垂直业务的分析方法纳入其中,大大降低了使用门槛。
从宏观层面,DI是人类通向AI的必经之路,大量思想、经验、方法论散落各个行业专家的脑中,这已经成为制约发展的严重问题。我们解决了业务的数据化后,就要解决知识的信息化,即数据智能。
只有经历了DI时代,我们才有可能迎来AI时代!
3AI人工智能阶段(未来)
AI核心是智能的自我进化,将是人类的一次飞跃;商业模式将是B2C、C2C。
在DI的阶段,我们将知识信息化,赋予机器;在AI时代,机器将脱离现有数据的束缚,像人一样,拥有自主思考、学习、判断、进化的能力。
大胆的想象一下,如果说几百万年前,人类从猿人逐渐进化成现代人,是人类进化史的第一次飞跃;那么,下一轮进化将是人工智能,从对人的意识、思维的模拟,到像人那样思考,甚至超过人的智能。
AI是一套庞大系统,不仅局限在交互及终端中,我们造出了“人”,还要赋予其“灵魂”,使其具备自主的思维逻辑。由此,机器学习是AI的核心,DI是使机器学习成为可能。
DI落地的重要条件
1首先是数据的全方位采集
人人、物物都可以生产数据。但是,从当下看,只有少数的互联网科技公司实现了全业务数据化,大量传统企业还停留在非数据化、或部分数据化时代。仅从数据的采集与管理层面,就有很大的技术门槛。比如,在【友盟+】,每天采集的数据就有280亿之多,如何将这些数据加工-处理-挖掘-输出,是需要数据、算法、云能力、商业应用等多种能力的融合。
现在业内普遍的做法,是建立数据处理中心,可以理解为数据加工厂。【友盟+】认为,面向DI、AI的数据处理平台,应该是一体化、标准化、开放性、高安全、秒级处理、高弹性的数据智能平台。它能帮助企业处理现有的数据业务,应对复杂多变的市场环境,在强调标准化的同时,兼具灵活性与开放性,并且能直接与业务对接,形成从数据采集到应用的闭环。
2其次是知识的信息化
人的需求,从未改变;人即商业,商业即人。最核心是认知、认可、行动。把散落的思想、经验、方法论有机组织起来,用数据来驱动,用机器来提升决策效率,快速试错、反复迭代。结合现有的商业模式,我们可以从对人的洞察、对人的营销、对人的行动策略谈起。
由此,2017UBDC峰会,特别策划三大分论坛:数据化运营专场、广告营销专场、新零售专场,全球的顶级企业将讲述基于DI数据智能的新玩法、新观点。
在现阶段,数据应用的重点是帮助企业重塑人货场、业务链,深入了解消费者,让大量的数据运转出商业价值,成为社会经济的基础智能支撑。而在可以预见的将来,数据将超越今天的智能终端,成为每个人身体和思想的延伸,创造“你”的数据价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27