京公网安备 11010802034615号
经营许可证编号:京B2-20210330
DI是人类通向AI的必经之路
早在1980年,未来学家托夫勒在《第三次浪潮》中就提到“大数据”一词。而37年后的今天,普通人对于数据依然是云里雾里。但这并不妨碍人类对数据的追寻,越来越多的人开始相信,数据之于人类的变革正在进行,并且远比想象中的迅猛。数据应用的终点是AI(人工智能)吗?我们会因为机器人失业吗?这样的竞争压力又是否会催生科幻小说里的新人类?
2017UBDC全域大数据峰会,将“DI的力量”作为主题,DI即数据智能,并首次给出答案:DI是人类通向AI的必经之路。大会将对数据的无限想象与现实应用紧密结合,从高处着眼、从小处着手,聚焦当下的数据价值,探讨数据赋能下的新零售、新营销、新互联网业务、新金融风控,并为你打开关于数据的谜团。
下面,抢先剧透关于DI的三个问题:
DI是什么?
DI:Data Intelligence,即数据智能。
DI(数据智能)以数据为基础,不局限于对数据本身的统计和分析,而是运用先进的研究模型对其潜在价值的深入挖掘。典型场景包括:推广的智能策略服务、用户体验的智能调优、以线上智能分析赋能线下等。
我们不光知其然还要知其所以然,数据不是结果,而是策略,最终再通过恰当的形式得以执行和调优。数据服务由单调的关联展示,走向自主的学习预判,越来越智能。相信DI+各行各业,将会产生更振奋和深远的影响。
数据演进的三个阶段
1BI商业智能阶段(过去)
数据驱动业务,商业模式以B2B为主,数据的能力主要集中在对业务的监测,这时候大量的人工成本不可避免,分析人员的水平、能力直接导致决策的可靠性。典型产品包括:各种统计工具、销售管理系统、运营管理系统等。
2DI数据智能阶段(现在)
数据驱动智能,商业模式以B2B2C、B2B为主,数据能力重点在“因果分析”,即探究为什么。对业务的全方位数据监测成为可能后,分析人员成为瓶颈,由数据智能替代人肉分析,完成策略、业务、数据高效自动循环。目前,以【友盟+】的U-Dplus等新型工具为代表,不仅实现传统统计功能,还将垂直业务的分析方法纳入其中,大大降低了使用门槛。
从宏观层面,DI是人类通向AI的必经之路,大量思想、经验、方法论散落各个行业专家的脑中,这已经成为制约发展的严重问题。我们解决了业务的数据化后,就要解决知识的信息化,即数据智能。
只有经历了DI时代,我们才有可能迎来AI时代!
3AI人工智能阶段(未来)
AI核心是智能的自我进化,将是人类的一次飞跃;商业模式将是B2C、C2C。
在DI的阶段,我们将知识信息化,赋予机器;在AI时代,机器将脱离现有数据的束缚,像人一样,拥有自主思考、学习、判断、进化的能力。
大胆的想象一下,如果说几百万年前,人类从猿人逐渐进化成现代人,是人类进化史的第一次飞跃;那么,下一轮进化将是人工智能,从对人的意识、思维的模拟,到像人那样思考,甚至超过人的智能。
AI是一套庞大系统,不仅局限在交互及终端中,我们造出了“人”,还要赋予其“灵魂”,使其具备自主的思维逻辑。由此,机器学习是AI的核心,DI是使机器学习成为可能。
DI落地的重要条件
1首先是数据的全方位采集
人人、物物都可以生产数据。但是,从当下看,只有少数的互联网科技公司实现了全业务数据化,大量传统企业还停留在非数据化、或部分数据化时代。仅从数据的采集与管理层面,就有很大的技术门槛。比如,在【友盟+】,每天采集的数据就有280亿之多,如何将这些数据加工-处理-挖掘-输出,是需要数据、算法、云能力、商业应用等多种能力的融合。
现在业内普遍的做法,是建立数据处理中心,可以理解为数据加工厂。【友盟+】认为,面向DI、AI的数据处理平台,应该是一体化、标准化、开放性、高安全、秒级处理、高弹性的数据智能平台。它能帮助企业处理现有的数据业务,应对复杂多变的市场环境,在强调标准化的同时,兼具灵活性与开放性,并且能直接与业务对接,形成从数据采集到应用的闭环。
2其次是知识的信息化
人的需求,从未改变;人即商业,商业即人。最核心是认知、认可、行动。把散落的思想、经验、方法论有机组织起来,用数据来驱动,用机器来提升决策效率,快速试错、反复迭代。结合现有的商业模式,我们可以从对人的洞察、对人的营销、对人的行动策略谈起。
由此,2017UBDC峰会,特别策划三大分论坛:数据化运营专场、广告营销专场、新零售专场,全球的顶级企业将讲述基于DI数据智能的新玩法、新观点。
在现阶段,数据应用的重点是帮助企业重塑人货场、业务链,深入了解消费者,让大量的数据运转出商业价值,成为社会经济的基础智能支撑。而在可以预见的将来,数据将超越今天的智能终端,成为每个人身体和思想的延伸,创造“你”的数据价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12