京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言在生态学研究中的应用分析
随着观测手段的不断进步和长期观测数据的不断积累,加上数据共享机制不断完善,生态学研究已经跨入的大数据的时代。面对巨量的原始数据,一个生态学者需要运用相当可观的数学知识和编程技巧来把它们转化成方便处理的有效数据。因此,现代生态学研究对研究者的数据分析和处理能力要求更高。传统的统计软件已经很难满足当前的数据分析需求。
近年来,R语言以其灵活、开放、易于掌握、免费等诸多优点,在生态学研究各领域迅速传播并赢得广大研究者的青睐和应用。为了证实这个结论,我们通过逐篇查阅的方式,统计近5年来(2012-2016)20种影响因子3以上与生态学SCI杂志20325篇研究论文(不包括综述)使用R语言作为数据分析工具的情况(图1和图2)。
结果表明,2012年这20种刊物总发表研究论文数为3845篇,使用R语言作为数据分析工具的为1309篇,使用比例为33.9%;2013年总发表论文数为4180篇,使用R语言为1607篇,使用比例为38.7%;2014年总发表论文数为4169篇,使用R语言为1831篇,使用比例为42.1%; 2015年总发表论文数为4030篇,使用R语言为1942篇,使用比例为49.0%;2016年总发表论文数为4101篇,使用R语言为2206篇,使用比例为54.2%。可见近5年来,生态学研究论文使用R语言作为分析工具比例呈现快速增长趋势,并在2016年已经超过50%,占居半壁江山,以不争的事实说明R语言已经成为生态学研究中最主要的数据分析工具(图2)。
2016年使用R比例最高前三个刊物分别为Ecography(75.6%), Journal of Ecology(73.8%), Methods in Ecology and Evolution (70.1%),这三个刊物使用R的论文比例均超过70%。
图1.近5年来20种SCI生态学杂志所发表的研究论文使用R语言作为数据分析工具的比例趋势
图2. 20种SCI生态学杂志所发表的研究论文使用R语言作为数据分析工具的平均比例趋势
以上统计结果表明,在国际上选择R语言作为生态学数据分析工具已经成为“标配”。但相比国际SCI刊物,国内生态学刊物内论文选择R作为数据分析工具比例却比较低。我们用同样的方法查阅了4个国内生态学杂志:《生态学报》、《植物生态学报》、《生物多样性》和《应用生态学报》近5年来所发论文R语言使用比例。结果表明,虽然使用R的比例也正呈现逐年增加的趋势(图3),但是还是处于相当低的水平。
《植物生态学报》和《生物多样性》这两个刊物目前已经达到10%以上,但是《生态学报》和《应用生态学报》这两个刊物的使用R比例仅有1.3%左右,跟SCI刊物比相差甚远。说明R语言在国内学者和研究生中使用普及率并不高,可能有几个方面的原因:1)虽然R语言的设计之初就是避免通过大量编程实现统计算法,但最基本的编程能力还是需要的,因此对于一般非计算机专业的研究人员来说无疑提高了难度。2)掌握统计学知识,提高逻辑分析能力是用好R的非常重要的条件,但国内研究人员和研究生统计学基础普遍比国外的同行弱;3)与其他的技能一样,学会熟练使用R语言也并非一日之功。当前国内普遍浮躁的学术氛围下,很多研究人员和研究生们不愿意花很多时间来学习R语言,他们更习惯打开一个菜单驱动的统计平台,并在几分钟内得到结果;4)最后应该归咎于R语言所有帮助系统都为英文版本,在国内普及起来难度比较大。
总之,在学术界R语言得到广泛的应用,这已经成为大家公认的事实。如果现在不会R,你没有优势可言;如果5年后,你还不会R,那你差不多就可以被淘汰了。当然R毕竟只是程序语言,是编程软件,是解决问题的手段。它犹如降龙十八掌的最后一掌,是前面所有功力的集中体现。掌握统计学知识,提高逻辑分析能力是我们用好R需要修炼的内功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12