
当医疗大数据遇到健康商业保险
近年来,受政策利好推动和消费者观念提升,健康险市场增速迅猛,潜力巨大。预计到 2020 年,商业健康险市场规模将达到 2万亿,成为现有医疗保障体系的有效补充。
作为商业健康险的供给侧,保险公司在发展商业健康险的过程中,为满足客户需求、提高自身运营及盈利能力,迫切需要在整合用户病历档案、简化客户理赔流程、建立高效的医疗保险审核系统。
整合用户的各项电子病历档案,需打破时空限制,为客户随时随地获得个性化精准医疗提供信息基础;简化客户理赔流程,享受便捷即时“快赔、直赔”,必须实现医院系统与保险核心系统直连,让客户就诊信息及理赔材料可直接同步至理赔系统;建立高效的医疗保险审核系统,对医疗数据融合提出需求,促进实现由事后审核向事前、事中审核延伸,强化风险控制,提高审核效率,确保医保管理更加科学合理。
保险公司要想实现以上目标,需要准确、全面地获取用户医疗数据。由于医院对医疗数据独占性,造成医疗服务信息不对称,医疗数据的获取成为难题。
险企亟需数据共享 信息孤岛无可回避
保险公司所需的医疗数据包括医嘱信息、手术信息、检查检验信息、影像资料、病历信息等。产生医疗数据的医院内部信息系统非常多,不同厂商、不同时间开发的软件产品,在技术架构、数据结构、存储方式等方面存在着巨大差异,形成了一个个数据孤岛。信息孤岛的存在导致医疗数据信息无法共享融合,如果用传统的接口方式打通所需的这些数据,需要各软件厂商提供数据接口支持,协调时间和接口费用都是不可承受之重,与保险公司获取医疗数据初衷背道而驰。
异构数据融合技术突破商业医保数据获取障碍 博为独有的异构数据融合技术,不改变原系统代码,无需软件厂家参与,独立抓取医院各软件系统(HIS、EMR、PACS、LIS等)中的临床数据,自动建立数据关联,输出结构化数据库,不仅简化了协调、缩短了工期、提高了安全,数据集成共享实施效率提高近百倍,成功突破保险公司获取医疗数据的障碍。该技术具有如下优势: 无障碍——无需原厂商支持,医疗数据采集融合环节简便畅通; 低成本——将人员协调成本、开发成本降到最低,有效减少项目交付时间; 零风险——非侵入式采集,无需开放原数据库,保证原系统安全; 高效率——与系统架构、代码无关,无需研发数据接口,直接采集。
当医疗大数据遇到健康商业保险,保险公司应用博为异构数据融合技术将获得显著成效将客户的医院临床数据直接采集融合,为保险理赔与医保监控提供数据支持医疗数据无延迟采集,改善了传统理赔周期长现状,客户可享受“直赔、快赔”,改善了客户理赔体验实现同一客户不同医院医疗数据融合,帮助保险公司整合用户的各项电子病历档案,弥补“互联网+时代新型医疗体系”服务模式的欠缺完善医疗保险审核系统,有效解决审核人员数量不足、专业能力不足和监管能力薄弱及审核标准不一的现状,强化风险控制。 未来,对于保险行业而言,医疗大数据不仅提升其控费能力,也有助于保险公司精确用户需求构图,优化服务流程,设计更贴合市场产品与服务,故掌握大数据采集核心技术即占领行业先机
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10