
R语言绘图之页面布局
par()、layout()、split.screen()函数
1. par()函数的参数详解
函数par()可以用来设置或者获取图形参数,par()本身(括号中不写任何参数)返回当前的图形参数设置(一个list);若要设置图形参数,则可用par(tag = value)的形式,其中tag的详细说明参见下面的列,value就是参数值,例如:
par(mar = c(4, 4, 1, 0.5), bg = "yellow") # 设置边距参数和背景色
par(pin=c(2,3)) #定义图形为2英寸宽,3英寸高
par(lwd=2,cex=1.5) #线条为默认的2倍宽,符号为默认的1.5倍
par(cex.axis=0.75,font.axis=3) #坐标轴文字缩放为原来的75%,斜体
col, pch, cex, lty, lwd 这些参数的意思与par()中的参数基本相同,有所区别的是,par()中这些参数只能设置一个单值,而这里可以对它们设置一个向量,这个向量的值将依次运用到各个元素上,若向量长度短于元素个数,那么向量会被循环使用,直到所有的元素都被画出来,事实上,向量的循环使用也是R图形参数的一大特点。
2. layout():mat用矩阵设置窗口的划分,矩阵的0元素表示该位置不画图,非0元素必须包括从1开始的连续的整数值,比如:1……N,按非0元素的大小设置图形的顺序。widths用来设置窗口不同列的宽度,heights设置不同行的高度。par()的mfcol,和mfrow参数也有类似layout的功能。layout()函数的一般形式为layout(mat),mat为一矩阵,mat元素的数量决定了一个output device被等分成几份相同元素为一块。
layout(matrix(c(1,2,3,0,2,3,0,0,3),nr=3)) matrix有9个元素,具有这样的形式:
[,1] [,2] [,3]
[1,] 1 0 0
[2,] 2 2 0
[3,] 3 3 3
把这个矩阵传入layout函数,我们就能得到这样的output device
如此,figure1占据了左上角的一个格子,第二行的前两个格子属于figure2,figure3占满最下一行的三个格子。
layout(matrix(1:4,2,2)) #将当前装置分割为矩阵2行2列的布局
[,1] [,2]
[1,] 1 3
[2,] 2 4
layout.show(4) #显示绘图装置分割好的1到4部分;
查看下面代码的不同之处:
layout(matrix(1:6,3,2)) #将当前装置分割为3行2列的布局
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
layout.show(6) #显示布局的编号
layout(matrix(1:6,2,3))#将当前装置分割为2行3列布局
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
layout.show(6)#显示布局编号
layout(matrix(c(1:3,3),2,2)) #建立矩阵,将装置分割为3部分
[,1] [,2]
[1,] 1 3
[2,] 2 3
layout.show(3) #显示布局编号
m<-matrix(1:4,2,2);m #建立矩阵m,2列2行
layout(m,widths=c(1,3),heights=c(3,1)) #将当时装置按照m进行划分,宽度之比为1:3,高度之比为3:1
layout.show(4)
m<-matrix(c(1,1,2,1),2,2);m #建立矩阵
layout(m,widths=c(2,1),heights=c(1,2)) #按照矩阵编号进行分割,编号相同的为同一块,宽度为2:1,高度为1:2
layout.show(2)
m<-matrix(0:3,2,2)#,注意,此矩阵中有0,0是不绘图的,可以查看一下效果
layout(m,c(1,3),c(1,3)) #行为1:3,列为1:3
layout.show(3)
2. 案例一:
attach(mtcars)
opar<-par(no.readonly=TRUE)#保存默认设置
par(mfrow=c(2,2))#将画布分割为2*2格局
plot(wt,mpg,main="Scatterplot of wt vs. mpg")
plot(wt,disp,main="Scatterplot of wt vs disp")
hist(wt, main="Histogram of wt")
boxplot(wt,mian="Boxplot of wt")
par(opar)
detach(mtcars)
案例二:
attach(mtcars)
opar<-par(no.readonly=TRUE)
par(mfrow=c(3,1))# 将画布分割为3行,1列格局
hist(wt)
hist(mpg)
hist(disp)
par(opar)
detach(mtcars)
案例三:
attach(mtcars)
layout(matrix(c(1,1,2,3),2,2,byrow = TRUE))
hist(wt)
hist(mpg)
hist(disp)
detach(mtcars)
3. split.screen函数
split.screen(c(1,2)):将当前的绘画装置分割为2块,分别为1号2号,可以通过screen(1)或screen(2)进行选择,但此时的分割通常是按水平分割的,如果进行进详细的分割,可以用layout函数。
screen()选择绘图区域,screen(n = , new = TRUE)
eraser.screen() 清除选中的绘图区域,erase.screen(n = )
close.screen() 移除特定的选区,close.screen(n, all.screens = FALSE)
screen Figs中的数字
split.screen()分割后,其余的函数才能使用。若无参数,则返回分割后小区域的编号,以向量的形式出现
close.screen退出分割,如果关闭当前的区域(即分割后的小区域),则进入下一个小区域,close.screen(all = TRUE)表示退出分割状态
例子:
par(bg = "white") # 白色背景
split.screen(c(2, 1)) # 分为上下两个屏,2行1列
split.screen(c(1, 3), screen = 2) # 将2屏再细分为3个小屏,即2屏分为1行3列
screen(1) # 选中1屏
plot(10:1)
screen(4) # 选4屏
plot(10:1)
close.screen(all = TRUE) # 退出分屏模式
split.screen(c(2, 1)) # 分为上下2个屏
split.screen(c(1, 2), 2) # 将下屏分为2个屏
plot(1:10) # 在第3屏绘图,此时为当前激活的屏
erase.screen() # 清除当前屏
plot(1:10, ylab = "ylab 3")
screen(1) # 选1屏
plot(1:10)
screen(4) # 激活4屏
plot(1:10, ylab = "ylab 4")
screen(1, FALSE) # 返回1屏,但不清空1屏,如果为screen(1,TRUE),则清空1屏
plot(10:1, axes = FALSE, lty = 2, ylab = "") # 加点
axis(4) # 右边加坐标轴
title("Plot 1")
close.screen(all = TRUE) # 退出分屏模式
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26