京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何利用SPSS产生随机数字表
在医学研究中,科研工作者常常需要把研究对象进行随机分组,实现不同处理因素实验顺序的随机化或在总体中随机抽取部分样本作为研究。以上问题均涉及到统计学中随机化的问题,其目的主要是减少偏性,提高均衡性,是统计学能够得出客观推断的前提。
实现随机化的主要方法有两种,即随机数字表和计算机的随机数发生器。所谓的随机数发生器就是通过一定的算法,对事先选定的随机种子做复杂运算,用产生的结果来近似地模拟完全随机数,这种随机数被称作伪随机数〔1〕。一些医学文献或书籍常常只是简单提及SPSS产生随机数字的菜单操作命令,没有作为重要知识点进行讲解。笔者主要介绍如何利用SPSS 13·0统计分析软件产生随机数字的常用方法。
利用随机数生成函数生成随机数字在SPSS统计软件中,利用随机数生成函数生成一列随机数字的方法是调用Transform菜单下的compute子菜单,如图1所示。在Function group列表中列出了可以实现各种功能的函数,这里我们选择RandomNumbers,立刻会在其下面的Functions and SpecialVar-iables子对话框中会提供了一系列随机数生成函数列表。不同函数表示各自所产生的随机数字符合特定的分布,如t分布、F分布和Poisson分布等函数,当我们选取相应函数时,其左侧对话框内会有相应的函数功能英文介绍说明。
这里我们以常用的正态分布函数为例进行讲解。
软件所生成的随机数个数与数据库中的记录数相同,这里我们事先建立NO变量,并输入从1到10作为要进行随机化的记录编号。在ComputeVariable对话框下的TargetVariable框中输入随机数的变量名,这里我们定义为random,然后选取Functions and SpecialVariables子对话框下的Rv.Norma,l点击按钮,在Numeric Expression表达式框内会出现函数表达式两个问号分别代表我们要定义的正态分布均数和标准差,这里我们以输入均数=100,标准差=10为例,最后点击OK按钮提交,结果在SPSS13.0数据窗口中的random变量一列会产生一组随机数字,见图2。
利用SPSS13.0软件生成随机数字结果利用随机数生成器生成随机数字首先,调用
Transform菜单下的Random NumbeGenerators子菜单。该对话框主要包括ActiveGenerator和ActiveGenerator Initialization两部分内容。其中ActiveGenerator部分, SPSS13.0软件主要提供了两种随机数字生成器SPSS12Compatible和MersennTwister。SPSS12Compatible: SPSS12及之前版本的随机数字生成器,这里为软件默认选项,一般可以不做修改。Mersenne Twister:基于马特赛特旋转的随机数字生成器。在Active Generator Initialization部分,其功能为随机数生成器初始值设置。Random选项为随机选定随机数种子。在利用计算机产生随机数字的过程中,随机数的产生依赖于随机数种子,随机数字种子不同,会产生一列不同的随机数。如果每次输入同样的种子,就会得到完全相同的一列随机数。FixedVaue选项为由操作者设定随机数种子,可选择1 ~2 000 000 000之间的正整数〔2〕。
利用具体随机数种子生成随机数字的基本步骤:
1·在Fixedvalue选项中填入任意一数字,这里我们以填入50为例,点击Paste按钮,这时会自动弹出SPSS语句编辑窗口(Syntax Editor),使该窗口最小化。
2·选择Transform菜单下的compute子菜单,在TargetVariable输入新的变量名,这里输入random1,在Numeric Expression中,我们重复上面利用正态分布函数生成随机数字的过程,这里仍然选择以100为均数,10为标准差。
3·点击Paste按钮,在上面弹出的SPSS语句编辑窗口中会增加一些利用正态分布函数产生随机数字的语句。选择菜单Run下面的Al,l便会利用语句产生一列新的随机数字。结果见图2的random1变量一列。
以上两种方法均是研究者利用SPSS统计软件直接生成随机数的简便方法,此外还可以利用他人事先编辑好的宏程序来实现随机数的生成。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12